To see the other types of publications on this topic, follow the link: KTiOAsO4.

Journal articles on the topic 'KTiOAsO4'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'KTiOAsO4.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Liu, Z., Q. Wang, X. Zhang, et al. "A KTiOAsO4 Raman laser." Applied Physics B 94, no. 4 (2009): 585–88. http://dx.doi.org/10.1007/s00340-009-3377-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chani, Valery I., Kiyoshi Shimamura, and Tsuguo Fukuda. "Determination of equilibrium cations for the KTiOPO4 structure." Journal of Materials Research 12, no. 9 (1997): 2470–74. http://dx.doi.org/10.1557/jmr.1997.0326.

Full text
Abstract:
Single crystals with the structure of KTiOPO4 (KTP) were grown from mixtures containing equal concentrations of KSnOPO4 and KGeOPO4 (i), KTiOPO4 and KGeOPO4 (ii), and KTiOPO4 and KTiOAsO4 (iii), respectively. The comparison of the lattice parameters measured and calculated from Vegard's rule shows that structural stability of KTiOAsO4 is higher in comparison with KTiOPO4. It was found that addition of GeO2 to the KTP containing flux is accompanied by increasing all lattice parameters of KTP that correspond to substitution of As5+ by Ge4+.
APA, Harvard, Vancouver, ISO, and other styles
3

Bocchini, Adriana, Uwe Gerstmann, Tim Bartley, Hans-Georg Steinrück, Gerald Henkel, and Wolf Gero Schmidt. "Electrochemical performance of KTiOAsO4 (KTA) in potassium-ion batteries from density-functional theory." Physical Review Materials 6 (October 31, 2022): 105401. https://doi.org/10.1103/PhysRevMaterials.6.105401.

Full text
Abstract:
The electrochemical performance of potassium titanyl arsenate (KTiOAsO<sub>4</sub>, KTA) as the cathode and anode in K-ion batteries is calculated within density-functional theory. Cathodes and anodes are modeled using K-deficient K<sub>1-<em>x</em></sub>TiOAsO4 (<em>x</em> = 0.0&ndash;1.0) and K-doped KTiOAsO4K<sub><em>x</em></sub>&nbsp;(x = 0.0&ndash;0.5), respectively. For KTA cathodes/anodes a slightly larger/smaller open circuit voltage is found than predicted for potassium titanyl phosphate. The present results suggest that a solely KTA-based K-ion battery can reach an average working vo
APA, Harvard, Vancouver, ISO, and other styles
4

Kung, A. H. "Narrowband mid‐infrared generation using KTiOAsO4." Applied Physics Letters 65, no. 9 (1994): 1082–84. http://dx.doi.org/10.1063/1.112132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mashkovtsev, R. I., and L. I. Isaenko. "Radiation-induced holelike centers in KTiOAsO4." Solid State Communications 95, no. 10 (1995): 739–43. http://dx.doi.org/10.1016/0038-1098(95)80091-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gallagher, H. G., X. Qi, J. N. Sherwood, and R. M. Vrcelj. "Crystal growth and characterisation of KTiOAsO4." Journal of Crystal Growth 224, no. 3-4 (2001): 303–8. http://dx.doi.org/10.1016/s0022-0248(01)01015-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bosenberg, W. R., L. K. Cheng, and J. D. Bierlein. "Optical parametric frequency conversion properties of KTiOAsO4." Applied Physics Letters 65, no. 22 (1994): 2765–67. http://dx.doi.org/10.1063/1.112556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xu Jinjin, 徐瑾瑾, 张行愚 Zhang Xingyu, 丛振华 Cong Zhenhua, et al. "Tunable Nd 3+∶YAG/KTiOAsO4 Raman Lasers." Chinese Journal of Lasers 47, no. 6 (2020): 0601002. http://dx.doi.org/10.3788/cjl202047.0601002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Qiang, Zilong Zhang, Jianhui Liu, and Mali Gong. "100Hz high energy KTiOAsO4 optical parametric oscillator." Infrared Physics & Technology 61 (November 2013): 287–89. http://dx.doi.org/10.1016/j.infrared.2013.09.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Z. J., Q. P. Wang, X. Y. Zhang, et al. "1120 nm second-Stokes generation in KTiOAsO4." Laser Physics Letters 6, no. 2 (2009): 121–24. http://dx.doi.org/10.1002/lapl.200810100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Gasmi Cherifi, Taieb. "New All-Solid-State KTA-Based DIAL for Tropospheric Methane Monitoring." EPJ Web of Conferences 237 (2020): 03017. http://dx.doi.org/10.1051/epjconf/202023703017.

Full text
Abstract:
We present an Optical Parametric Oscillator (OPO)-based differential absorption lidar (DIAL) that operates in the mid-infrared (3.0-4.5 um). Tunability of the OPO is achieved by the use of Potassium Titanyle Arsenate (KTiOAsO4), or KTA crystal. The Dial measurements of methane are in good agreement with reported values and also exhibits diurnal fluctuations in concentration levels during atmospheric monitoring.
APA, Harvard, Vancouver, ISO, and other styles
12

Yelisseyev, A. P., L. I. Isaenko, A. I. Belov, and A. A. Merkulov. "Yb3+ doping of nonlinear KTiOAsO4 (KTA) single crystals." Journal of Crystal Growth 198-199 (March 1999): 555–59. http://dx.doi.org/10.1016/s0022-0248(98)01046-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Thomas, P. A., T. Lyford, P. Rejmankova-Pernot, F. Lorut, J. Baruchel, and S. P. Collins. "An Investigation of Polar Twinning in KTiOPO4and KTiOAsO4." Acta Crystallographica Section A Foundations of Crystallography 56, s1 (2000): s393. http://dx.doi.org/10.1107/s0108767300028191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Mayo, S. C., P. A. Thomas, S. J. Teat, G. M. Loiacono, and D. N. Loiacono. "Structure and non-linear optical properties of KTiOAsO4." Acta Crystallographica Section B Structural Science 50, no. 6 (1994): 655–62. http://dx.doi.org/10.1107/s0108768194006300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Emanueli, Shai, and Ady Arie. "Temperature-Dependent Dispersion Equations for KTiOPO4 and KTiOAsO4." Applied Optics 42, no. 33 (2003): 6661. http://dx.doi.org/10.1364/ao.42.006661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bai, Fen, Qingpu Wang, Zhaojun Liu, et al. "Idler-resonant optical parametric oscillator based on KTiOAsO4." Applied Physics B 112, no. 1 (2013): 83–87. http://dx.doi.org/10.1007/s00340-013-5401-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Liao, Yu, and Xiu Wang. "KTiOAsO4 Thin Films Prepared by Pulsed Laser Deposition." Crystal Research and Technology 34, no. 7 (1999): 825–27. http://dx.doi.org/10.1002/(sici)1521-4079(199908)34:7<825::aid-crat825>3.0.co;2-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Li, Genglin, Hui Xu, Yicun Yao, Yuechen Jia, and Feng Chen. "Second harmonic generation in precisely diced KTiOAsO4 ridge waveguides." Optical Materials 121 (November 2021): 111561. http://dx.doi.org/10.1016/j.optmat.2021.111561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gao, Z. L., Y. X. Sun, X. Yin, S. P. Wang, M. H. Jiang, and X. T. Tao. "Growth and electric-elastic properties of KTiOAsO4 single crystal." Journal of Applied Physics 108, no. 2 (2010): 024103. http://dx.doi.org/10.1063/1.3446042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Liu, W. J., S. S. Jiang, X. R. Huang, et al. "White‐beam synchrotron topographic characterization of flux‐grown KTiOAsO4." Applied Physics Letters 68, no. 1 (1996): 25–27. http://dx.doi.org/10.1063/1.116744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dusausoy, Y., V. Lorrain, F. Ribert, et al. "Electron paramagnetic resonance study of Fe3+ centres in KTiOAsO4." Applied Magnetic Resonance 5, no. 3-4 (1993): 331–37. http://dx.doi.org/10.1007/bf03162529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Atuchin, V. V., L. I. Isaenko, O. Yu Khyzhun, L. D. Pokrovsky, A. K. Sinelnichenko, and S. A. Zhurkov. "Structural and electronic properties of the KTiOAsO4(001) surface." Optical Materials 30, no. 7 (2008): 1149–52. http://dx.doi.org/10.1016/j.optmat.2007.05.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Shen, Z. X., X. B. Wang, H. P. Li, S. H. Tang, and F. Zhou. "Pressure-Induced Phase Transitions of KTiOAsO4 by Raman Spectroscopy." REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY 7 (1998): 748–50. http://dx.doi.org/10.4131/jshpreview.7.748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bierlein, John D., Herman Vanherzeele, and A. A. Ballman. "Linear and nonlinear optical properties of flux‐grown KTiOAsO4." Applied Physics Letters 54, no. 9 (1989): 783–85. http://dx.doi.org/10.1063/1.101552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Blasse, G., G. J. Dirksen, L. H. Brixner, A. Ferreti, and P. A. Thomas. "Luminescence in the KTiOPO4 structure field: KTiOAsO4 and KSnOPO4." Materials Chemistry and Physics 27, no. 3 (1991): 279–85. http://dx.doi.org/10.1016/0254-0584(91)90124-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Li, Tao, Jun Meng, Gaoyou Liu, and Zhaojun Liu. "High-Power KTiOAsO4 Optical Parametric Oscillator at 300 Hz." Photonics 12, no. 3 (2025): 270. https://doi.org/10.3390/photonics12030270.

Full text
Abstract:
A high-power and high-repetition KTiOAsO4 (KTA) optical parametric oscillator (OPO) was established in this study, with the adoption of plane-parallel and ring cavities. The pump was a high-power Nd:YAG master oscillator power amplifier (MOPA) system with a pulse repetition frequency (PRF) of 300 Hz, and the corresponding beam quality factors were Mx2 = 3.4 and My2 = 3.2. In the plane-parallel cavity experiment, powers of 51.1 W (170 mJ) and 15.9 W (53 mJ) in the signal and idler were obtained, respectively. In terms of the average power of 1 μm of a pumped KTA OPO, to our knowledge, this is t
APA, Harvard, Vancouver, ISO, and other styles
27

Bian Jintian, 卞进田, 孔辉 Kong Hui, 徐海萍 Xu Haiping, 叶庆 Ye Qing та 孙晓泉 Sun Xiaoquan. "Temperature Tuning Properties of 3.5-μm KTiOAsO4 Optical Parametric Oscillator". Chinese Journal of Lasers 48, № 4 (2021): 0401015. http://dx.doi.org/10.3788/cjl202148.0401015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bhar, G. C., P. Kumbhakar, U. Chatterjee, and S. Das. "Tunable Mid-Infrared Generation by Difference Frequency Mixing in KTiOAsO4." Japanese Journal of Applied Physics 38, Part 1, No. 5A (1999): 2760–63. http://dx.doi.org/10.1143/jjap.38.2760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Cheng, L. K., L. T. Cheng, J. D. Bierlein, F. C. Zumsteg, and A. A. Ballman. "Properties of doped and undoped crystals of single domain KTiOAsO4." Applied Physics Letters 62, no. 4 (1993): 346–48. http://dx.doi.org/10.1063/1.108953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Novikova, N. E., I. A. Verin, N. I. Sorokina, O. A. Alekseeva, M. Tseitlin, and M. Roth. "Structure of KTiOAsO4 single crystals at 293 and 30 K." Crystallography Reports 55, no. 3 (2010): 412–23. http://dx.doi.org/10.1134/s1063774510030089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zukauskas, Andrius, Nicky Thilmann, Valdas Pasiskevicius, Fredrik Laurell, and Carlota Canalias. "Periodically poled KTiOAsO4 for highly efficient midinfrared optical parametric devices." Applied Physics Letters 95, no. 19 (2009): 191103. http://dx.doi.org/10.1063/1.3258001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jiao, Xiazhuo, Jianqiang Ye, Mailikeguli Aihemaiti, Yuxia Zhou, Sujian Niu, and Xining Yang. "Optical Vortex-Pumped KTiOAsO4 Narrow-Linewidth Picosecond-Pulsed Parametric Oscillator." Applied Sciences 15, no. 2 (2025): 539. https://doi.org/10.3390/app15020539.

Full text
Abstract:
Herein, we present a picosecond-pulsed optical vortex parametric oscillator capable of generating high-power, narrow-linewidth near- and mid-infrared optical vortex outputs. The optical parametric oscillator (OPO), consisting of a KTiOAsO4 (KTA) crystal and a Z-shaped standing wave cavity formed by five mirrors, transferred the orbital angular momentum (OAM) of the pump field to the signal and idler fields. The transmission mechanism of the OAM within the signal singly resonantsingly-resonant KTA-OPO was investigated, and the OAM was controlled and selectively transferred among the pump, signa
APA, Harvard, Vancouver, ISO, and other styles
33

Kung, A. H., Suli Fei, and H. L. Strauss. "Mid-Infrared Sources Using Dye Lasers in KTiOAsO4 and LiIO3." Applied Spectroscopy 50, no. 6 (1996): 790–94. http://dx.doi.org/10.1366/0003702963905745.

Full text
Abstract:
A coherent infrared source tunable from 3.4 to 5.3 μm has been constructed by difference-frequency mixing of the second harmonic of a Q-switched Nd:YAG laser and a pulsed dye laser using the new crystal KTiOAsO4 (KTA). A peak power of &gt;50 kW and pulse energy of &gt;250 μJ are measured at 4.4 μm. The results are compared with mixing in LiIO3. For a low-power Nd:YAG laser that produces 200 mJ of 532-nm radiation, the infrared power is similar for the two crystals. For high-power YAG lasers, calculation shows that commercial KTA crystals can produce over 10 mJ of IR power in the absence of abs
APA, Harvard, Vancouver, ISO, and other styles
34

Abrabri, M., S. Condom, J. Durand, and A. Larbot. "Élaboration des composés KTiOPO4 et KTiOAsO4 par voie sol-gel." Journal de Chimie Physique 91 (1994): 1419–30. http://dx.doi.org/10.1051/jcp/1994911419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Isaenko, L. I., A. A. Merkulov, V. I. Tjurikov, V. V. Atuchin, L. V. Sokolov, and E. M. Trukhanov. "Growth and real structure of KTiOAsO4 crystals from self-fluxes." Journal of Crystal Growth 171, no. 1-2 (1997): 146–53. http://dx.doi.org/10.1016/s0022-0248(96)00483-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Taziev, Rinat M. "Surface and quasi-longitudinal acoustic waves in KTiOAsO4 single crystals." Ultrasonics 54, no. 2 (2014): 425–27. http://dx.doi.org/10.1016/j.ultras.2013.09.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Watson, G. H. "Polarized Raman spectra of ktioaso4 and isomorphic nonlinear-optical crystals." Journal of Raman Spectroscopy 22, no. 11 (1991): 705–13. http://dx.doi.org/10.1002/jrs.1250221116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Zhong, Z., P. K. Gallagher, D. L. Loiacono, and G. M. Loiacono. "The thermal expansion and stability of KTiOAsO4 and related compounds." Thermochimica Acta 234 (March 1994): 255–61. http://dx.doi.org/10.1016/0040-6031(94)85148-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Xue, Dongfeng, and Siyuan Zhang. "Calculation of Second-Order Nonlinear Optical Coefficients of KTiOPO4and KTiOAsO4." Journal of Solid State Chemistry 142, no. 1 (1999): 156–62. http://dx.doi.org/10.1006/jssc.1998.8011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Liu, W. J., S. S. Jiang, X. B. Hu, et al. "X-ray topographic investigation of tungstate flux-grown KTiOAsO4 crystals." Il Nuovo Cimento D 19, no. 2-4 (1997): 185–93. http://dx.doi.org/10.1007/bf03040972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bai, Zhenxu, Chen Zhao, Jia Gao, et al. "Optical parametric oscillator with adjustable pulse width based on KTiOAsO4." Optical Materials 136 (February 2023): 113506. http://dx.doi.org/10.1016/j.optmat.2023.113506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Csanaková, Bianka, Ondřej Novák, Lukáš Roškot, et al. "High power single crystal KTA optical parametric amplifier for efficient 1.4–3.5 µm mid-IR radiation generation." Laser Physics 34, no. 7 (2024): 1–8. https://doi.org/10.1088/1555-6611/ad45db.

Full text
Abstract:
In this paper, we present a single crystal, KTA (potassium titanyl-arsenate, KTiOAsO4) basedpicosecond optical parametric amplifier pumped by an in-house built 1030 nm Yb:YAGthin-disk laser, capable of tunability from 1.46 to 3.5 &micro;m, operating at 90 kHz, with highaverage power in the signal and idler beams. The highest output power of 8.9 W was reached forthe 1750 nm signal beam with 19% conversion efficiency and the respective 2500 nm idlerbeam power was 6.2 W with 13% efficiency. The highest combined signal and idlermid-infrared power was 17 W at the 2060 nm wavelength degeneracy point
APA, Harvard, Vancouver, ISO, and other styles
43

Heng, Jiaxing, Pei Liu, and Zhaowei Zhang. "Spectral broadening in chirped-pulse optical parametric oscillators based on KTiOAsO4." Optics Letters 45, no. 18 (2020): 5085. http://dx.doi.org/10.1364/ol.404580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Li, Guochao, Qingpu Wang, Fen Bai, et al. "Optimum output coupling for a mid-infrared KTiOAsO4 optical parametric oscillator." Laser Physics 23, no. 2 (2013): 025402. http://dx.doi.org/10.1088/1054-660x/23/2/025402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Li, Heping, Feng Zhou, Yee Loy Lam, and Chan Hin Kim. "Effect of Fe doping on optical absorption properties in KTiOAsO4 crystals." Materials Research Bulletin 34, no. 5 (1999): 827–34. http://dx.doi.org/10.1016/s0025-5408(99)00072-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Abrabri, M., M. Rafiq, A. Larbot, and J. Durand. "Étude de la solution solide KTiOPO4-KTiOAsO4. Corrélation structure - propriétés optiques." Journal de Chimie Physique 92 (1995): 104–19. http://dx.doi.org/10.1051/jcp/1995920104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wang, Liang-Ling, Robert Röder, Xiao-Jun Cui, Werner Wesch, and Elke Wendler. "Damage recovery and dopant migration of Eu+ ion implanted KTiOAsO4 crystals." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 435 (November 2018): 209–13. http://dx.doi.org/10.1016/j.nimb.2018.01.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wang, Liang-Ling, and Xiao-Jun Cui. "Ion implantation, annealing diffusion and photoluminescence of Er in KTiOAsO4 crystals." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 307 (July 2013): 442–45. http://dx.doi.org/10.1016/j.nimb.2012.11.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chen, F., X. L. Wang, G. Fu, et al. "Property study on nickel ion implanted planar waveguide in KTiOAsO4 crystal." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 194, no. 3 (2002): 355–58. http://dx.doi.org/10.1016/s0168-583x(02)01143-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Jiang, Yongquan, and L. E. Halliburton. "Electron paramagnetic resonance study of platinum impurity ions in KTiOAsO4 crystals." Journal of Crystal Growth 310, no. 18 (2008): 4233–37. http://dx.doi.org/10.1016/j.jcrysgro.2008.06.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!