Academic literature on the topic 'Kurzweil-Henstock integral'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kurzweil-Henstock integral.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Kurzweil-Henstock integral"
Afiyah, Siti Nurul. "Henstock-Kurzweil Integral on [a,b]." CAUCHY 2, no. 1 (November 18, 2011): 24. http://dx.doi.org/10.18860/ca.v2i1.1805.
Full textLIU, WEI, GUOJU YE, YING WANG, and XUEYUAN ZHOU. "ON PERIODIC SOLUTIONS FOR FIRST-ORDER DIFFERENTIAL EQUATIONS INVOLVING THE DISTRIBUTIONAL HENSTOCK–KURZWEIL INTEGRAL." Bulletin of the Australian Mathematical Society 86, no. 2 (February 6, 2012): 327–38. http://dx.doi.org/10.1017/s0004972711003455.
Full textSánchez-Perales, Salvador, Francisco J. Mendoza Torres, and Juan A. Escamilla Reyna. "Henstock-Kurzweil Integral Transforms." International Journal of Mathematics and Mathematical Sciences 2012 (2012): 1–11. http://dx.doi.org/10.1155/2012/209462.
Full textCunanan, Andrew Felix IV Suarez, and Julius Benitez. "Simple Properties and Existence Theorem for the Henstock-Kurzweil-Stieltjes Integral of Functions Taking Values on C[a,b] Space-valued Functions." European Journal of Pure and Applied Mathematics 13, no. 1 (January 31, 2020): 130–43. http://dx.doi.org/10.29020/nybg.ejpam.v13i1.3626.
Full textCunanan, Andrew Felix IV Suarez, and Julius Benitez. "Simple Properties and Existence Theorem for the Henstock-Kurzweil-Stieltjes Integral of Functions Taking Values on C[a,b] Space-valued Functions." European Journal of Pure and Applied Mathematics 13, no. 1 (January 31, 2020): 130–43. http://dx.doi.org/10.29020/nybg.ejpam.v1i1.3626.
Full textBorkowski, Marcin, and Daria Bugajewska. "Applications of Henstock-Kurzweil integrals on an unbounded interval to differential and integral equations." Mathematica Slovaca 68, no. 1 (February 23, 2018): 77–88. http://dx.doi.org/10.1515/ms-2017-0082.
Full textLIU, WEI, GUOJU YE, and DAFANG ZHAO. "Multiple existence of solutions for a coupled system involving the distributional Henstock-Kurzweil integral." Carpathian Journal of Mathematics 34, no. 1 (2018): 77–84. http://dx.doi.org/10.37193/cjm.2018.01.08.
Full textBONGIORNO, B., L. DI PIAZZA, and K. MUSIAŁ. "APPROXIMATION OF BANACH SPACE VALUED NON-ABSOLUTELY INTEGRABLE FUNCTIONS BY STEP FUNCTIONS." Glasgow Mathematical Journal 50, no. 3 (September 2008): 583–93. http://dx.doi.org/10.1017/s0017089508004448.
Full textRacca, Abraham Perral, and Emmanuel A. Cabral. "The N-Integral." Journal of the Indonesian Mathematical Society 26, no. 2 (July 10, 2020): 242–57. http://dx.doi.org/10.22342/jims.26.2.865.242-257.
Full textSikorska-Nowak, Aneta. "Integrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta Integrals." Abstract and Applied Analysis 2010 (2010): 1–17. http://dx.doi.org/10.1155/2010/836347.
Full textDissertations / Theses on the topic "Kurzweil-Henstock integral"
David, Manolis. "The Henstock–Kurzweil Integral." Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166430.
Full textMcInnis, Erik O. "Gauge integration." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2002. http://library.nps.navy.mil/uhtbin/hyperion-image/02%5FMcInnis.pdf.
Full textThesis advisor(s): Chris Frenzen, Bard Mansager. Includes bibliographical references (p. 49). Also available online.
Marques, Rafael dos Santos. "Integral equations in the sense of Kurzweil integral and applications." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-08112016-104931/.
Full textSendo parte de um grupo de pesquisa em equações diferenciais funcionais (escrevemos EDFs), por causa de minha formação em teoria de integração não absoluta e porque certos tipos de EDFs podem ser escritas como equações integrais, decidi estudar esse último tipo de equações. O objetivo desse trabalho, portanto, é desenvolver a teoria de equações integrais, quando as integrais envolvidas são no sentido de Kurzweil-Henstock ou Kurzweil-Henstock-Stieltjes, através da correspondência entre soluções de equações integrais e soluções de equações diferenciais ordinárias generalizadas (ou EDOs generalizadas). A fim de obter resultados para estas equações integrais, propomos extensões de ambas a integral de Kurzweil e as EDOs generalizadas (encontradas em [36]). Desenvolvemos propriedades fundamentais dessa nova EDO generalizada, como resultados de existência e unicidade de solução, e propomos conceitos de estabilidade para as soluções de nossa nova classe de equações. Nós, então, aplicamos esses resultados a uma classe de equações integrais de Volterra não lineares de segunda espécie. Finalmente, consideramos um modelo de crescimento de populações (encontrado em [4]) que pode ser escrito como uma equação integral pertencente a essa classe de equações integrais de Volterra não lineares.
Hoffmann, Heiko [Verfasser], and R. [Akademischer Betreuer] Schnaubelt. "Descriptive characterisation of the variational Henstock-Kurzweil-Stieltjes integral and applications / Heiko Hoffmann. Betreuer: R. Schnaubelt." Karlsruhe : KIT-Bibliothek, 2014. http://d-nb.info/1069324043/34.
Full textBastian, Ryan. "An Introduction to the Generalized Riemann Integral and Its Role in Undergraduate Mathematics Education." Ashland University Honors Theses / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=auhonors1482504144122774.
Full textAcuña, Rogelio Grau. "On qualitative properties of generalized ODEs." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-26102016-090644/.
Full textNeste trabalho, nosso objetivo e provar resultados sobre prolongamento de soluções, limitação uniforme de soluções, estabilidade uniforme e estabilidade uniforme assintótica (no sentido clássico de Lyapunov) para equações diferenciais em medida e para equações dinâmicas em escalas temporais. A fim de obter os nossos resultados, empregamos a teoria de EDOs generalizadas, uma vez que estas equações abrangem equações diferenciais em medida e equações dinâmicas em escalas temporais. Portanto, para obter nossos resultados, vamos começar por provar, os resultados que queremos para EDOs generalizadas abstratas. Em seguida, usando a correspondência entre as soluções de EDOs generalizadas e soluções de equações diferenciais em medida (ver [38]), estenderemos os resultados para estas ultimas equações. Depois disso, usando a correspondência entre as soluções de equações diferenciais em medida e as soluções de equações dinâmicas em escalas temporais (ver [21]), estenderemos todos os resultados para estas ultimas equações. Finalmente, investigamos EDOs generalizadas autônomas e mostramos que estas equações não aumentam a classe de EDOs autônomas clássicas, mesmo quando consideramos uma classe mais geral de funções nos lados direitos das equações. Os novos resultados encontrados estão contidos em [16, 17, 18, 19].
Larsson, David. "Generalized Riemann Integration : Killing Two Birds with One Stone?" Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-96661.
Full textÄnda sedan Cauchys tid har integrationsteori i huvudsak varit ett försök att åter finna Newtons Eden. Under den idylliska perioden [. . . ] var derivator och integraler [. . . ] olika sidor av samma mynt.-Peter Bullen, citerad i [24] Under de senaste århundradena har integrationsteori genomgått många förändringar och framförallt har det funnits en spänning mellan Riemanns och Lebesgues respektive angreppssätt till integration. Riemanns definition är ofta den första integral som möter en student pa grundutbildningen, medan Lebesgues integral är kraftfullare. Eftersom Lebesgues definition är mer komplicerad introduceras den först i forskarutbildnings- eller avancerade grundutbildningskurser. Integralen som framställs i det här examensarbetet utvecklades av Ralph Henstock och Jaroslav Kurzweil. Genom att på ett enkelt sätt ändra kriteriet for integrerbarhet i Riemanns definition finner vi en kraftfull integral med många av Lebesgueintegralens egenskaper. Vidare utvidgar den generaliserade Riemannintegralen klassen av integrerbara funktioner i jämförelse med Lebesgueintegralen, medan vi samtidigt erhåller en karaktärisering av Lebesgueintegralen i termer av absolutintegrerbarhet. Eftersom klassen av generaliserat Riemannintegrerbara funktioner är större än de absolutintegrerbara funktionerna blir vissa satser mer omständiga att bevisa i jämforelse med eleganta resultat i Lebesgues teori. Därtill förloras vissa viktiga egenskaper vid sammansättning av funktioner och även möjligheten till abstraktion försvåras. Integralen ska alltså ses som ett komplement till Lebesgues definition och inte en ersättning.
Skovajsa, Břetislav. "Zobecněné obyčejné diferenciální rovnice v metrických prostorech." Master's thesis, 2014. http://www.nusl.cz/ntk/nusl-340897.
Full textZage, Esmael António. "Derivadas de Dini." Master's thesis, 2018. http://hdl.handle.net/10400.6/10000.
Full textIn this work we launched the challenge of studying derivatives of Dini, the reason for its appearance and some applications. In order to approach this subject in a coherent way, it was necessary to draw a path in which we had to remember some concepts taught in Secondary Education, such as: sequences and subsequences, limit, continuous function, differentiable function, monotony and extremes of a function; as well as related results. But it was also necessary to introduce subjects that go beyond Secondary Education, as upper limit and lower limit, semicontinuous functions. To apply the Dini derivatives we recall the Rolle and Lagrange Theorems, for which we present a generalization involving the Dini derivatives. As in any Calculus course, after the differential calculus arises integration, for this in the final Chapter consists of the well-known integrals of Riemann and Lebesgue and the construction of the Henstock-Kurzweil integral.
Kuncová, Kristýna. "Neabsolutně konvergentní integrály." Doctoral thesis, 2019. http://www.nusl.cz/ntk/nusl-408083.
Full textBooks on the topic "Kurzweil-Henstock integral"
Lee, Tuo Yeong. Henstock-Kurzweil integration on Euclidean spaces. Singapore: World Scientific, 2011.
Find full textFonda, Alessandro. The Kurzweil-Henstock Integral for Undergraduates. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95321-2.
Full textThe Kurzweil-Henstock integral and its differentials: A unified theory of integration on R and R (superscript n). New York: M. Dekker, 2001.
Find full textHenstock integration in the plane. Providence, R.I., USA: American Mathematical Society, 1986.
Find full text1928-, Výborný Rudolf, ed. The integral: An easy approach after Kurzweil and Henstock. Cambridge, UK: Cambridge University Press, 2000.
Find full textIntegration between the Lebesgue integral and the Henstock-Kurzweil integral: Its relation to local convex vector spaces. Singapore: World Scientific, 2002.
Find full textJaroslav, Kurzweil, ed. Theories of integration: The integrals of Riemann, Lebesgue, Henstock-Kurzweil, and Mcshane. River Edge, NJ: World Scientific Pub., 2004.
Find full textJaroslav, Kurzweil, ed. Theories of integration: The integrals of Riemann, Lebesgue, Henstock-Kurzweil, and Mcshane. 2nd ed. New Jersey: World Scientific, 2012.
Find full textKurtz, Douglas S. Theories of integration: The integrals of Riemann, Lebesgue, Henstock-Kurzweil, and Mcshane. Singapore: World Scientific Pub., 2005.
Find full textBook chapters on the topic "Kurzweil-Henstock integral"
Zhao, Dafang, Guoju Ye, Wei Liu, and Delfim F. M. Torres. "The Fuzzy Henstock–Kurzweil Delta Integral on Time Scales." In Differential and Difference Equations with Applications, 525–41. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75647-9_41.
Full textBongiorno, Benedetto. "The Henstock-Kurzweil Integral." In Handbook of Measure Theory, 587–615. Elsevier, 2002. http://dx.doi.org/10.1016/b978-044450263-6/50014-2.
Full text"The Henstock–Kurzweil Integral." In A Garden of Integrals, 169–204. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.7135/upo9781614442097.009.
Full text"The multiple Henstock-Kurzweil integral." In Series in Real Analysis, 21–52. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814324595_0002.
Full text"Improper Integral." In Kurzweil-Henstock Integral in Riesz spaces, edited by Antonio Boccuto, Beloslav Riecan, and Marta Vrabelova, 84–110. BENTHAM SCIENCE PUBLISHERS, 2012. http://dx.doi.org/10.2174/978160805003110901010084.
Full text"(SL)-integral." In Kurzweil-Henstock Integral in Riesz spaces, edited by Antonio Boccuto, Beloslav Riecan, and Marta Vrabelova, 134–65. BENTHAM SCIENCE PUBLISHERS, 2012. http://dx.doi.org/10.2174/978160805003110901010134.
Full text"The one-dimensional Henstock-Kurzweil integral." In Series in Real Analysis, 1–20. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814324595_0001.
Full text"Multipliers for the Henstock-Kurzweil integral." In Series in Real Analysis, 169–203. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814324595_0006.
Full text"Elementary Introduction to Kurzweil-Henstock Integral." In Kurzweil-Henstock Integral in Riesz spaces, edited by Antonio Boccuto, Beloslav Riecan, and Marta Vrabelova, 1–24. BENTHAM SCIENCE PUBLISHERS, 2012. http://dx.doi.org/10.2174/978160805003110901010001.
Full text"Kurzweil - Henstock Integral in Topological Spaces." In Kurzweil-Henstock Integral in Riesz spaces, edited by Antonio Boccuto, Beloslav Riecan, and Marta Vrabelova, 62–70. BENTHAM SCIENCE PUBLISHERS, 2012. http://dx.doi.org/10.2174/978160805003110901010062.
Full textConference papers on the topic "Kurzweil-Henstock integral"
INDRATI, CHRISTIANA RINI, and SOEPARNA DARMAWIJAYA. "The Consequence of Controlled Densed Theorem of Henstock-Kurzweil Integral in n-Dimensional Euclidean Space." In Third Asian Mathematical Conference 2000. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777461_0023.
Full text