Books on the topic 'Kurzweil-Henstock integral'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 16 books for your research on the topic 'Kurzweil-Henstock integral.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Lee, Tuo Yeong. Henstock-Kurzweil integration on Euclidean spaces. Singapore: World Scientific, 2011.
Find full textFonda, Alessandro. The Kurzweil-Henstock Integral for Undergraduates. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95321-2.
Full textThe Kurzweil-Henstock integral and its differentials: A unified theory of integration on R and R (superscript n). New York: M. Dekker, 2001.
Find full textHenstock integration in the plane. Providence, R.I., USA: American Mathematical Society, 1986.
Find full text1928-, Výborný Rudolf, ed. The integral: An easy approach after Kurzweil and Henstock. Cambridge, UK: Cambridge University Press, 2000.
Find full textIntegration between the Lebesgue integral and the Henstock-Kurzweil integral: Its relation to local convex vector spaces. Singapore: World Scientific, 2002.
Find full textJaroslav, Kurzweil, ed. Theories of integration: The integrals of Riemann, Lebesgue, Henstock-Kurzweil, and Mcshane. River Edge, NJ: World Scientific Pub., 2004.
Find full textJaroslav, Kurzweil, ed. Theories of integration: The integrals of Riemann, Lebesgue, Henstock-Kurzweil, and Mcshane. 2nd ed. New Jersey: World Scientific, 2012.
Find full textKurtz, Douglas S. Theories of integration: The integrals of Riemann, Lebesgue, Henstock-Kurzweil, and Mcshane. Singapore: World Scientific Pub., 2005.
Find full textBoccuto, Antonio, Beloslav Riecan, and Marta Vrabelova, eds. Kurzweil-Henstock Integral in Riesz spaces. BENTHAM SCIENCE PUBLISHERS, 2012. http://dx.doi.org/10.2174/97816080500311090101.
Full textLeader, Solomon. The Kurzweil-Henstock Integral & Its Differentials (Pure and Applied Mathematics). CRC, 2001.
Find full textHenstock-Kurzweil Integration: Its Relation to Topological Vector Spaces (Real Analysis). World Scientific Publishing Company, 2000.
Find full textYee, Lee Peng, and Rudolf Vyborny. Integral: An Easy Approach after Kurzweil and Henstock (Australian Mathematical Society Lecture Series). Cambridge University Press, 2000.
Find full textFonda, Alessandro. The Kurzweil-Henstock Integral for Undergraduates: A Promenade Along the Marvelous Theory of Integration. Birkhäuser, 2018.
Find full text