To see the other types of publications on this topic, follow the link: L-values.

Journal articles on the topic 'L-values'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'L-values.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

AGASHE, AMOD. "SQUARENESS IN THE SPECIAL L-VALUE AND SPECIAL L-VALUES OF TWISTS." International Journal of Number Theory 06, no. 05 (2010): 1091–111. http://dx.doi.org/10.1142/s1793042110003393.

Full text
Abstract:
Let N be a prime and let A be a quotient of J0(N) over Q associated to a newform such that the special L-value of A (at s = 1) is non-zero. Suppose that the algebraic part of the special L-value of A is divisible by an odd prime q such that q does not divide the numerator of [Formula: see text]. Then the Birch and Swinnerton-Dyer conjecture predicts that the q-adic valuations of the algebraic part of the special L-value of A and of the order of the Shafarevich–Tate group are both positive even numbers. Under a certain mod q non-vanishing hypothesis on special L-values of twists of A, we show t
APA, Harvard, Vancouver, ISO, and other styles
2

ARAKAWA, Tsuneo, and Masanobu KANEKO. "On multiple $L$ -values." Journal of the Mathematical Society of Japan 56, no. 4 (2004): 967–91. http://dx.doi.org/10.2969/jmsj/1190905444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yoshida, Hiroyuki. "Cohomology and $L$ -values." Kyoto Journal of Mathematics 52, no. 2 (2012): 369–432. http://dx.doi.org/10.1215/21562261-1551003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mourtada, Mariam, та V. Kumar Murty. "Distribution of values of L′/L(σ,χD)". Moscow Mathematical Journal 15, № 3 (2015): 497–509. http://dx.doi.org/10.17323/1609-4514-2015-15-3-497-509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hatcher, Rhonda L. "Special Values of L-Series." Proceedings of the American Mathematical Society 114, no. 2 (1992): 337. http://dx.doi.org/10.2307/2159652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Moerman, Boaz. "L-values for conductor 32." Journal of Number Theory 234 (May 2022): 1–30. http://dx.doi.org/10.1016/j.jnt.2021.09.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hatcher, Rhonda L. "Special values of $L$-series." Proceedings of the American Mathematical Society 114, no. 2 (1992): 337. http://dx.doi.org/10.1090/s0002-9939-1992-1068124-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Terhune, David. "Evaluation of double L-values." Journal of Number Theory 105, no. 2 (2004): 275–301. http://dx.doi.org/10.1016/j.jnt.2003.11.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Plaggenborg, Stefan. "David L. Hoffmann, Stalinist values." Cahiers du monde russe 44, no. 44/4 (2003): 761–63. http://dx.doi.org/10.4000/monderusse.4124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sasaki, Yoshitaka. "Zeta Mahler measures, multiple zeta values and L-values." International Journal of Number Theory 11, no. 07 (2015): 2239–46. http://dx.doi.org/10.1142/s1793042115501006.

Full text
Abstract:
The zeta Mahler measure is the generating function of higher Mahler measures. In this article, explicit formulas of higher Mahler measures, and relations between higher Mahler measures and multiple zeta (star) values are showed by observing connections between zeta Mahler measures and the generating functions of multiple zeta (star) values. Additionally, connections between higher Mahler measures and Dirichlet L-values associated with primitive quadratic characters are discussed.
APA, Harvard, Vancouver, ISO, and other styles
11

Perkins, Rudolph Bronson. "Explicit formulae for $$L$$ L -values in positive characteristic." Mathematische Zeitschrift 278, no. 1-2 (2014): 279–99. http://dx.doi.org/10.1007/s00209-014-1315-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Rogers, M., J. G. Wan, and I. J. Zucker. "Moments of elliptic integrals and critical $$L$$ L -values." Ramanujan Journal 37, no. 1 (2014): 113–30. http://dx.doi.org/10.1007/s11139-014-9584-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Murase, Atsushi. "CM values and central L-values of elliptic modular forms." Mathematische Annalen 347, no. 3 (2009): 529–43. http://dx.doi.org/10.1007/s00208-009-0447-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Block, Henry W., William S. Griffith, and Thomas H. Savits. "L-superadditive structure functions." Advances in Applied Probability 21, no. 4 (1989): 919–29. http://dx.doi.org/10.2307/1427774.

Full text
Abstract:
Structure functions relate the level of operations of a system as a function of the level of the operation of its components. In this paper structure functions are studied which have an intuitive property, called L-superadditive (L-subadditive). Such functions describe whether a system is more series-like or more parallel-like. L-superadditive functions are also known under the names supermodular, quasi-monotone and superadditive and have been studied by many authors. Basic properties of both discrete and continuous (i.e., taking a continuum of values) L-superadditive structure functions are s
APA, Harvard, Vancouver, ISO, and other styles
15

Block, Henry W., William S. Griffith, and Thomas H. Savits. "L-superadditive structure functions." Advances in Applied Probability 21, no. 04 (1989): 919–29. http://dx.doi.org/10.1017/s0001867800019121.

Full text
Abstract:
Structure functions relate the level of operations of a system as a function of the level of the operation of its components. In this paper structure functions are studied which have an intuitive property, called L-superadditive (L-subadditive). Such functions describe whether a system is more series-like or more parallel-like. L-superadditive functions are also known under the names supermodular, quasi-monotone and superadditive and have been studied by many authors. Basic properties of both discrete and continuous (i.e., taking a continuum of values) L-superadditive structure functions are s
APA, Harvard, Vancouver, ISO, and other styles
16

Taelman, Lenny. "Special L-values of Drinfeld modules." Annals of Mathematics 175, no. 1 (2012): 369–91. http://dx.doi.org/10.4007/annals.2012.175.1.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Alkan, Emre. "Averages of values of $L$-series." Proceedings of the American Mathematical Society 141, no. 4 (2012): 1161–75. http://dx.doi.org/10.1090/s0002-9939-2012-11506-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hida, Haruzo. "On the critical values of $L$." Duke Mathematical Journal 74, no. 2 (1994): 431–529. http://dx.doi.org/10.1215/s0012-7094-94-07417-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Knightly, Andrew, and Charles Li. "Weighted averages of modular $L$-values." Transactions of the American Mathematical Society 362, no. 03 (2009): 1423–43. http://dx.doi.org/10.1090/s0002-9947-09-04923-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Fomenko, O. M. "Extreme Values of Automorphic L-Functions." Journal of Mathematical Sciences 193, no. 1 (2013): 136–44. http://dx.doi.org/10.1007/s10958-013-1442-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Scholbach, Jakob. "Special $L$-values of geometric motives." Asian Journal of Mathematics 21, no. 2 (2017): 225–64. http://dx.doi.org/10.4310/ajm.2017.v21.n2.a2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Vatsal, V. "Special values of anticyclotomic $L$-functions." Duke Mathematical Journal 116, no. 2 (2003): 219–61. http://dx.doi.org/10.1215/s0012-7094-03-11622-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ward, Kenneth. "Values of twisted Artin L-functions." Archiv der Mathematik 103, no. 3 (2014): 285–90. http://dx.doi.org/10.1007/s00013-014-0692-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Peter, Manfred. "Mean values of Dirichlet L-series." Mathematische Annalen 318, no. 1 (2000): 67–84. http://dx.doi.org/10.1007/s002080000109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Webb, John J. "Partition values and central critical values of certain modular $L$-functions." Proceedings of the American Mathematical Society 138, no. 04 (2010): 1263. http://dx.doi.org/10.1090/s0002-9939-09-10188-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Liu, Fang, Xiao-Min Li, and Hong-Xun Yi. "Value distribution of L-functions concerning shared values and certain differential polynomials." Proceedings of the Japan Academy, Series A, Mathematical Sciences 93, no. 5 (2017): 41–46. http://dx.doi.org/10.3792/pjaa.93.41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lu, Qing. "Bounds for the spectral mean value of central values of L-functions." Journal of Number Theory 132, no. 5 (2012): 1016–37. http://dx.doi.org/10.1016/j.jnt.2011.12.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Dummigan, Neil, and Vasily Golyshev. "Quadratic $${\mathbb {Q}}$$ Q -curves, units and Hecke $$L$$ L -values." Mathematische Zeitschrift 280, no. 3-4 (2015): 1015–29. http://dx.doi.org/10.1007/s00209-015-1463-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Garrett, Paul B., and Michael Harris. "Special Values of Triple Product L-Functions." American Journal of Mathematics 115, no. 1 (1993): 161. http://dx.doi.org/10.2307/2374726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Lee, Joon-Gul. "CONGRUENCES OF L-VALUES FOR CYCLIC EXTENSIONS." Honam Mathematical Journal 32, no. 4 (2010): 791–95. http://dx.doi.org/10.5831/hmj.2010.32.4.791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Anglès, Bruno, Lenny Taelman, and Vincent Bosser. "Arithmetic of characteristic p special L-values." Proceedings of the London Mathematical Society 110, no. 4 (2015): 1000–1032. http://dx.doi.org/10.1112/plms/pdu067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Friedman, Michael. "Sports and Social Values. Robert L. Simon." Ethics 96, no. 4 (1986): 886–87. http://dx.doi.org/10.1086/292811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Dummigan, Neil, and Mark Watkins. "Critical Values of Symmetric Power L-functions." Pure and Applied Mathematics Quarterly 5, no. 1 (2009): 127–61. http://dx.doi.org/10.4310/pamq.2009.v5.n1.a4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Furusawa, Masaaki, and Kazuki Morimoto. "On special values of certain L-functions." American Journal of Mathematics 136, no. 5 (2014): 1385–407. http://dx.doi.org/10.1353/ajm.2014.0032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Xue, Hang. "Central values of degree six L-functions." Journal of Number Theory 203 (October 2019): 350–59. http://dx.doi.org/10.1016/j.jnt.2019.03.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Khuri-Makdisi, Kamal, Winfried Kohnen, and Wissam Raji. "Values of L-series of Hecke eigenforms." Journal of Number Theory 211 (June 2020): 28–42. http://dx.doi.org/10.1016/j.jnt.2019.10.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Tsumura, Hirofumi. "On evaluation formulas for double L-values." Bulletin of the Australian Mathematical Society 70, no. 2 (2004): 213–21. http://dx.doi.org/10.1017/s0004972700034432.

Full text
Abstract:
In this paper, we give some evaluation formulas for the values of double L-series of Tornheim's type, in terms of the Dirichlet L-values and the Riemann zeta values at positive integers. As special cases, these give the formulas for double L-values given by Terhune.
APA, Harvard, Vancouver, ISO, and other styles
38

Zhang, Qiao. "Integral mean values of modular L-functions." Journal of Number Theory 115, no. 1 (2005): 100–122. http://dx.doi.org/10.1016/j.jnt.2004.10.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Fukuhara, Shinji, and Yifan Yang. "Twisted Hecke L-values and period polynomials." Journal of Number Theory 130, no. 4 (2010): 976–99. http://dx.doi.org/10.1016/j.jnt.2009.09.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Fang, Jiangxue. "Special L-values of abelian t-modules." Journal of Number Theory 147 (February 2015): 300–325. http://dx.doi.org/10.1016/j.jnt.2014.07.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Beilinson, A. A. "Higher regulators and values of L-functions." Journal of Soviet Mathematics 30, no. 2 (1985): 2036–70. http://dx.doi.org/10.1007/bf02105861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Anglès, Bruno, Tuan Ngo Dac, and Floric Tavares Ribeiro. "On special L-values of t-modules." Advances in Mathematics 372 (October 2020): 107313. http://dx.doi.org/10.1016/j.aim.2020.107313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Koyama, Shin-ya, and Nobushige Kurokawa. "Triple mean values of Witten L-functions." Monatshefte für Mathematik 181, no. 2 (2015): 405–18. http://dx.doi.org/10.1007/s00605-015-0841-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Samart, Detchat. "Feynman integrals and critical modular $L$-values." Communications in Number Theory and Physics 10, no. 1 (2016): 133–56. http://dx.doi.org/10.4310/cntp.2016.v10.n1.a5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Gross, Benedict H. "On the values of Artin L-functions." Pure and Applied Mathematics Quarterly 1, no. 1 (2005): 1–13. http://dx.doi.org/10.4310/pamq.2005.v1.n1.a1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Aistleitner, Christoph, Kamalakshya Mahatab, Marc Munsch та Alexandre Peyrot. "On large values of L(σ,χ)". Quarterly Journal of Mathematics 70, № 3 (2018): 831–48. http://dx.doi.org/10.1093/qmath/hay067.

Full text
Abstract:
Abstract In recent years, a variant of the resonance method was developed which allowed to obtain improved Ω-results for the Riemann zeta function along vertical lines in the critical strip. In the present paper, we show how this method can be adapted to prove the existence of large values of |L(σ,χ)| in the range σ∈(1/2,1], and to estimate the proportion of characters for which |L(σ,χ)| is of such a large order. More precisely, for every fixed σ∈(1/2,1), we show that for all sufficiently large q, there is a non-principal character χ(modq) such that log|L(σ,χ)|≥C(σ)(logq)1−σ(loglogq)−σ. In the
APA, Harvard, Vancouver, ISO, and other styles
47

Yamamoto, Shuji. "A sum formula of multiple L-values." International Journal of Number Theory 11, no. 01 (2014): 127–37. http://dx.doi.org/10.1142/s1793042115500074.

Full text
Abstract:
We prove an alternating sum formula of certain multiple L-values conjectured by Essouabri, Matsumoto and Tsumura, which generalizes the sum formula of multiple zeta values. The proof relies on the method of partial fraction decomposition.
APA, Harvard, Vancouver, ISO, and other styles
48

Kawashima, Gaku, Tatsushi Tanaka, and Noriko Wakabayashi. "Cyclic sum formula for multiple L-values." Journal of Algebra 348, no. 1 (2011): 336–49. http://dx.doi.org/10.1016/j.jalgebra.2011.09.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ihara, Kentaro. "Special values of multiple Hecke L-functions." Journal of Applied Mathematics and Computing 40, no. 1-2 (2012): 649–58. http://dx.doi.org/10.1007/s12190-012-0542-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Soundararajan, K. "Extreme values of zeta and L-functions." Mathematische Annalen 342, no. 2 (2008): 467–86. http://dx.doi.org/10.1007/s00208-008-0243-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!