To see the other types of publications on this topic, follow the link: L298N Motor Driver.

Journal articles on the topic 'L298N Motor Driver'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'L298N Motor Driver.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

G.R, Dakshayini. "Gesture Driven Smart Car Using Arduino." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 05 (2025): 1–9. https://doi.org/10.55041/ijsrem48123.

Full text
Abstract:
ABSTRACT This project involves designing a gesture-controlled smart car using an Arduino Nano, MPU6050 sensor, L298N motor driver, and DC motors. The MPU6050 detects hand gestures, which are processed by the Arduino to control the car's motion (forward, backward, left, right, and stop). This intuitive system offers hands-free operation, with applications in robotics, assistive technology, and interactive demonstrations. It showcases Arduino-based robotics and sensor integration, with potential for wireless or autonomous upgrades. Keywords: Gesture-Controlled Smart Car, Arduino Nano, MPU6050 Sensor, L298N Motor Driver, DC Motors, Robotics, Sensor Integration, Hands-Free Control, Assistive Technology, Interactive Systems.
APA, Harvard, Vancouver, ISO, and other styles
2

Azhari, T. I. Nasution, and P. F. A. Azis. "MPU-6050 Wheeled Robot Controlled Hand Gesture Using L298N Driver Based on Arduino." Journal of Physics: Conference Series 2421, no. 1 (2023): 012022. http://dx.doi.org/10.1088/1742-6596/2421/1/012022.

Full text
Abstract:
Abstract Robots are intelligent machines that are controlled by computer applications to perform various operations and services to complete high-risk jobs such as fire, poison, sharp objects, viruses, etc. MPU-6050 Serves as a movement medium in robot electronic systems where the robot moves. Arduino nano functions as a controller on a system robot that includes the MPU-6050, Motor Driver L298N, and NRF24L01. NRF24L01 Serves as a communication medium that is connected between the robot movement system and the hand gesture movement system. The L298N Motor Driver moves according to the signal sent by the MPU-6050 sensor. The L298N Motor Driver functions as an output medium that is made to the DC motor. The L298N Motor Driver will instruct the DC motor to move according to the signal sent by the MPU-6050 module. From the data obtained, the MPU-6050 works at a Y angle with an analog signal of 27.42 ° while driving. The MPU-6050 has X and Y axes with error values at X of 0.32% and Y of 0.48%. NRF24L01 functions as a command to send and receive data signals that work with a maximum range of 30 meters with a speed of 0.457 m/s.
APA, Harvard, Vancouver, ISO, and other styles
3

Swathi, Mrs K. "IoT Based Smart Home Automation System." International Journal for Research in Applied Science and Engineering Technology 11, no. 11 (2023): 331–36. http://dx.doi.org/10.22214/ijraset.2023.56506.

Full text
Abstract:
The aim of this project is to control the lights, fans and detecting of fire and gas leakage at home using the IoT Blynk cloud platform, an ESP32, and an L298N motor driver. By doing so we can enable remote control of these devices, providing greater convenience and flexibility for the end-user. The ESP32 will act as the central hub of the project, receiving and processing data from the Blynk cloud platform. The L298N motor driver will be used to control the lights and fans, with the ESP32 sending signals to the driver to turn the devices on or off as required.
APA, Harvard, Vancouver, ISO, and other styles
4

Satriawan, I. Putu Gede Giri, I. Made Eri Setiadi, I. Putu Bagus Wisnu Saputra, et al. "Sistem kontrol otomatis dan monitoring temperatur ruangan menggunakan ESP-32 untuk mengendalikan motor DC pada motorized valve." Journal of Applied Mechanical Engineering and Green Technology 3, no. 3 (2022): 99–103. http://dx.doi.org/10.31940/jametech.v3i3.99-103.

Full text
Abstract:
Sistem kontrol otomatis dan monitoring temperature ruangan menggunakan ESP-32 untuk mengendalikan motor DC pada motorized valve yang mengatur aliran air dingin pada AHU (air handling unit) adalah rancangan alat yang dibuat untuk mengontrol suhu pada suatu ruangan. Dengan adanya alat kontrol temperatur otomatis menggunakan mikrokontroler ESP-32, maka dapat menjadikan alternatif untuk kontrol suhu pada suatu ruangan. Alat kontrol temperature otomatis menggunakan mikrokontroler ESP-32, suatu buah sensor suhu termokopel MAX6675 untuk membaca suhu pada supply ducting AHU serta menggerakkan motorized valve dari 0%, 50%, dan 100%. Komponen yang digunakan untuk mengatur pergerakan motorized valve tersebut adalah motor driver L298N. Motor driver L298N ini berfungsi sebagai pengatur tegangan output motor yang di mana tegangan output tersebut diubah menjadi gelombang PWM yang mengatur pergerakan motorized valve, sehingga motorized valve dapat terbuka dari 0%, 50%, dan 100% sesuai dengan pembacaan suhu dari sensor suhu.
APA, Harvard, Vancouver, ISO, and other styles
5

Pranavi, Nikam, Sharma Sanya, Chavan Aman, Rajput Saakshi, and Sharma Anirudh. "A Voice-Activated Mobility Wheelchair Powered by Solar Energy." A Voice-Activated Mobility Wheelchair Powered by Solar Energy 8, no. 10 (2023): 6. https://doi.org/10.5281/zenodo.10033282.

Full text
Abstract:
A smart wheelchair gives a person independence and ease. A smart wheelchair is a mechanically driven vehicle that can be easily operated by the user's hand for self-mobility. As a result, using the wheelchair's wheels requires less effort from the user. Additionally, this makes it possible for people who are physically or visually handicapped to go from one location to another. Only the movement of the person's hands will allow the wheelchair to travel forward, backward, left, and right, even if the person's body is completely or partially paralyzed. The wheelchair and the person can communicate wirelessly. In order to operate the experimental version of our system, a joystick that is attached to a NodeMCU transmitter is used to control the wheelchair. The wheelchair can also be controlled via voice instructions sent over Bluetooth from the Dabble smartphone application. In order to move the wheels in response to user input, the L298n motor driver needs help from the joystick signals and voice commands supplied to the receiver NodeMCU. The L298n that sits in between the microcontroller and the wheels aids in converting the voltage needed to operate the wheels.Keywords:- ESP32 Microcontroller, ESP8266 Microcontroller, NodeMCU, L298n Motor Driver, Dabble App, IR Sensor, Obstacle Detection.
APA, Harvard, Vancouver, ISO, and other styles
6

V. P. Kharkar, Dr. "Fully Automated Solar Grass Cutter." International Scientific Journal of Engineering and Management 04, no. 04 (2025): 1–7. https://doi.org/10.55041/isjem02903.

Full text
Abstract:
ABSTRACT— The paper demonstrates an analysis of a solar-powered grass cutter system which combines renewable technologies with automated features and remote control to resolve operational expenses and environmental damage and reduce labor requirement when maintaining turf. The equipment collects solar power from a high-performance solar panel before the stored energy gets saved in a rechargeable lithium battery which drives the BLDC motor for accurate grass trimming. An L298N motor driver together with an HC-05 Bluetooth module controls the movement of four DC gear motors through smartphone applications to provide enhanced functionality and safety. The methodology executes three stages starting with component selection and ending with system testing and evaluation of power efficiency and operational reliability and cutting precision under different testing conditions. The performance evaluation of the system reveals its competency in precise trimming with low energy usage while remaining environmentally sustainable yet acknowledges restrictions from solar power dependency along with restrictive Bluetooth distance. The technology serves residential gardens while operating in public parks as well as sports fields and agricultural farms and will gain capabilities from AI-based navigation and GPS integration along with IoT connectivity for self-operation in the future. The project presents an efficient sustainable technological system which advances toward establishing smart green law maintenance practices. Keywords- IoT Technology, L298N Motor Driver, HC-05 Module, BLDC Motor, Lawn Maintenance, Sustainable Technology, Solar Energy, Grass Cutter, Bluetooth Control
APA, Harvard, Vancouver, ISO, and other styles
7

Shahare, Girish, Aditya Tiwari, Manav Tiwade, Gaurav Umredkar, Uday Buradkar, and Puranashti Bhosale. "Mobile-Controlled River Cleaning Boat." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 04 (2025): 1–9. https://doi.org/10.55041/ijsrem43741.

Full text
Abstract:
Water pollution is a major environmental challenge, with floating waste in rivers and lakes contributing to ecological degradation. Our project, a WiFi-Controlled River Cleaning Boat, aims to provide an efficient and cost-effective solution for manual waste collection from water bodies. Unlike automated systems, our boat operates under direct human control, ensuring adaptability to different cleaning requirements. The system is powered by an ESP8266 WiFi module, enabling wireless control through a mobile application. A L298N motor driver facilitates the movement of the boat, allowing precise maneuvering in water. The boat's structure is designed for stability and ease of operation, incorporating a mechanical collection system to gather floating waste efficiently. By eliminating the need for Arduino and sensors, our design reduces complexity and cost while ensuring robust performance. The WiFi-based control system allows operators to guide the boat remotely, making it an accessible and effective tool for river cleaning. This project offers a practical, scalable, and environmentally friendly approach to maintaining clean water bodies. Key Words: IoT (Internet of Things), Water Surface Cleaning, ESP8266 WiFi Module, L298N Motor Driver, Gear Motors,
APA, Harvard, Vancouver, ISO, and other styles
8

R, Aditya. "Hassle - Free Load Carrying Using Automated Guided Vehicle." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 04 (2024): 1–5. http://dx.doi.org/10.55041/ijsrem29935.

Full text
Abstract:
In today's rapidly evolving world, where efficiency and sustainability are paramount, businesses are seeking technologies that not only save time and drive profits but also align with their sustainable goals. In response to this demand, a prototype of an Automated Guided Vehicle (AGV) is developed.AGVs are versatile robotic platforms designed to navigate predefined paths while handling heavy loads of materials. The AGV system addresses these needs by utilizing cost-effective RFID tags and an RFID reader for efficient load tracking and navigation. Additionally, it incorporates two infrared (IR) sensors for path detection, an L298N motor driver for precise motor control, an Arduino microcontroller as the central processing unit, and an HC-05 Bluetooth module for wireless communication.By integrating these components, along with feedback control loops and path planning algorithms, The AGV is observed to be an efficient load carrier and can navigate reliably in dynamic environments. Above all, this solution not only saves time and enhances profitability but also promotes sustainability by optimizing resource utilization and minimizing manual intervention. Key Words: AGV(Automated Guided Vehicle),RFID(Radio Frequency Identification) tags, RFID (Radio Frequency Identification)reader, IR sensors, L298N Motor driver, Microcontroller.
APA, Harvard, Vancouver, ISO, and other styles
9

Ahuja, Piyyush. "Mind Controlled Robotic Wheelchair for Specially Abled People." International Journal for Research in Applied Science and Engineering Technology 13, no. 3 (2025): 2908–11. https://doi.org/10.22214/ijraset.2025.67953.

Full text
Abstract:
The goal of this project is to develop a mind-controlled wheelchair designed specifically for individuals with physical disabilities. The system integrates advanced components and cutting-edge technology to enable seamless operation through wireless communication, physiological monitoring, and brain signal processing. Key components include the ESP32 microcontroller, an L298N motor driver, DC BO motors, and an EEG (electroencephalogram) sensor for comprehensive functionality. The wheelchair’s operation is powered by the ESP32, which serves as the primary controller, managing signal acquisition, processing, and wireless communication. The L298N motor driver and DC BO motors ensure precise and smooth wheelchair movement, while the robust instrumentation amplifier facilitates accurate processing of brain signals. Additionally, the integration of the EEG sensor allows for real-time brainwave signal monitoring, ensuring reliable command execution and user safety. This innovative system empowers users by enabling effortless navigation through brainwave commands. The integration of advanced electronic components, wireless communication modules, and precise signal processing techniques ensures reliable and efficient operation. The project highlights the application of cutting-edge technologies to create a functional and adaptive solution, enhancing mobility, independence, and safety for specially-abled individuals while paving the way for advancements in assistive technologies.
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Qiuli, Jiying Chen, Zimo He, Feiyang Han, and Jiayi Liu. "An Infrared Obstacle Avoidance Car Based on STM32." Academic Journal of Science and Technology 10, no. 1 (2024): 146–48. http://dx.doi.org/10.54097/vg434579.

Full text
Abstract:
With the rapid development and wide application of artificial intelligence technology, the function of intelligent obstacle avoidance vehicle is becoming increasingly prominent. This article presents a design and realization method of infrared obstacle avoidance intelligent car based on STM32 MCU. The design is driven by two DC motors as main power sources. The motor drive circuit adopts L298N driver chip to control the DC motor to achieve the purpose of controlling the trolley. The infrared obstacle-avoidance sensor is used to judge obstacles and road conditions, and the distance between the car and obstacles is monitored in real time. The error caused by external physical condition can be eliminated by the calibration and optimization of the infrared obstacle avoidance module and the program of the single-chip microcomputer, so as to achieve the goal of accurate location of obstacles.
APA, Harvard, Vancouver, ISO, and other styles
11

Kumari, P. Prasanna. "Automatic Library Book Picker." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 04 (2024): 1–5. http://dx.doi.org/10.55041/ijsrem29948.

Full text
Abstract:
Automatic Library Book Picker is an ambitious project that aims at digitizing and automating libraries by incorporating the power of robotics, automation, and IoT technologies. This project also aims to promote a new age of technology to innovate the age-old invention of libraries. A NodeMCU serves as the core control unit for this automated library book picker, utilizing its built-in WiFi connectivity and Arduino compatibility to provide smooth control and communication. It uses pulse width modulated (PWM) signals to send information to other components. The four wheels are controlled by L298N motor drivers, which allow the robot to move in the library. Furthermore, the system incorporates a 60 RPM side-shaft DC motor to enable arm lifting operations, and a servo motor governs the functioning of a robotic gripper mechanism necessary for book manipulation. Thus, by converging these components, technologies, and advanced control algorithms, the automatic library book picker performs tasks such as retrieving books from the shelves with minimal human effort, providing security to the books in the library by reducing human contact, and also improving the user experience. Key Words: NodeMCU, L298N motor driver, Servo motor, Battery, DC Motor, Side Shaft DC Motor, PWM signals.
APA, Harvard, Vancouver, ISO, and other styles
12

Mahajan, Kavita. "Controlling Of Smart Movable Road Divider and Clearance of Ambulance Path." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 03 (2025): 1–9. https://doi.org/10.55041/ijsrem42025.

Full text
Abstract:
Road dividers are important for controlling traffic by creating lanes for incoming and outgoing traffic to make the movement of traffic smooth. But in the case of industrial areas or malls, traffic usage is different at different times of the day, and the lanes prove to be inefficiently utilized. In peak hours, one way could have heavy traffic congestion while the other lane is left empty, causing wastage of fuel and time. To solve this problem, a smart movable road divider system is suggested. The system dynamically changes lane allocation according to real-time traffic density through ESP32, ultrasonic sensors, IR sensors, and a motorized mechanism driven by an L298N motor driver. The sensors continuously observe traffic flow, enabling the divider to move towards the less crowded lane, thus maximizing road space utilization. Also, the system can advance emergency vehicles on a priority basis when needed, increasing traffic efficacy and response speed. This clever method reduces intervention by human operatives, optimizes traffic management, and gives timely feedback about traffic conditions. Keywords: Smart Road Divider, ESP32, Ultrasonic Sensors, IR Sensors, Motorized mechanism , L298N Motor Driver.
APA, Harvard, Vancouver, ISO, and other styles
13

Ingle, Suryangini. "IoT based Self Driving Car." International Scientific Journal of Engineering and Management 04, no. 05 (2025): 1–9. https://doi.org/10.55041/isjem03630.

Full text
Abstract:
Abstract This project shows an affordable self-driving car prototype that uses Raspberry Pi 4, motor driver, DC motors, USB webcam. The system combines software-control algorithms with hardware elements like DC motors, a motor driver (L298N), and a power supply. Using methods like grayscale conversion, Gaussian blur, etc. OpenCV processes a real-time video frame from the webcam to detect road boundaries, objects, signs, etc. The prototype uses either rule-based logic or a trained convolutional neural network (CNN) model to establish driving direction based on the data obtained from raspberry pi processor. PWM signals are transmitted from the Raspberry Pi to the motor driver in order to control the dc motor speed, direction, etc. Additionally, a VNC -based wireless communication system is included in the setup, enabling Wi-Fi monitoring and remote access. Performance was assessed using lane-following accuracy, and overall driving stability during testing. The system is a good example of how to create a flexible, reasonably priced self-driving platform for testing and teaching.
APA, Harvard, Vancouver, ISO, and other styles
14

Mary, Ms Preeja. "DELIVERY AUTOMATION ROBOT USING ARDUINO MICROCONTROLLER." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 05 (2024): 1–5. http://dx.doi.org/10.55041/ijsrem34007.

Full text
Abstract:
The Delivery Automation Robot project aims to develop a robust and efficient autonomous delivery robot for last-mile logistics operations. Built upon a foundation of sturdy hardware components including a four-wheel metal chassis and large wheels, the Delivery Automation Robot ensures stability and durability while navigating diverse terrains. Integrated with advanced control systems such as the L298n motor driver shield, NODEMCU, and Arduino Uno, the robot offers precise movement control and data processing capabilities. Equipped with essential sensors like the magnetometer HMC5883 and NEO 6m GPS module, the MDAR achieves accurate localization and navigation, crucial for optimizing delivery routes. Additionally, wireless communication facilitated by the HC06 Bluetooth module enables remote monitoring and control. Overall, the Delivery Automation Robot represents an innovative solution poised to revolutionize last-mile delivery processes, enhancing efficiency and reliability in logistics operations. Keywords: four-wheel chassis, L298n motor driver, NODEMCU, Arduino Uno, magnetometer HMC5883, NEO 6m GPS module, HC06 Bluetooth module.
APA, Harvard, Vancouver, ISO, and other styles
15

JogeswaraRao, Dr B., and J. varsha. "Fingerprint Sensor-Based Vehicle Starter Using Arduino." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 04 (2025): 1–9. https://doi.org/10.55041/ijsrem44527.

Full text
Abstract:
Vehicle security is a growing concern, with traditional key-based ignition systems being susceptible to theft, duplication, and unauthorized access. This paper proposes a biometric-based vehicle ignition system using fingerprint authentication to ensure that only authorized individuals can start the vehicle. The system is developed using an Arduino Uno microcontroller, an R307 fingerprint sensor, five push buttons for fingerprint management, an I2C LCD display, an L298N motor driver, and a DC motor to simulate vehicle ignition. The integration of biometric security eliminates the risk of key duplication and unauthorized use, providing an efficient and secure method of vehicle access. This paper discusses the system’s design, working principle, hardware implementation, and future improvements for real-world applications. Keywords: Arduino Uno, R307 FPS, L298N, LCD
APA, Harvard, Vancouver, ISO, and other styles
16

Hendajani, Fivtatianti, Arif Mughni, Ire Puspa Wardhani, and Abdul Hakim. "Modeling Automatic Room Temperature and Humidity Monitoring System with Fan Control on the Internet of Things." ComTech: Computer, Mathematics and Engineering Applications 13, no. 2 (2022): 75–85. http://dx.doi.org/10.21512/comtech.v13i2.7433.

Full text
Abstract:
The Internet of Things (IoT) aims to expand the benefits of being connected to the Internet network continuously. It functions as a control system that has been widely applied in various fields because in certain case people are not allowed in certain rooms for security reasons. The research aimed to create a temperature and humidity monitoring system using as many fan controls as expected by utilizing IoT. The model used input in the form of temperature and humidity sensors. The output was a motor driver that drove a fan and used a microcontroller as the main processor. IoT-based systems consisted of hardware and software. Hardware included NodeMCU ESP8266 V3, DHT22 sensor, L298N motor driver module, fan, and computer. Meanwhile, the microcontroller software was made using Arduino IDE. From the test results, the system model works well. Fan control is set manually based on desired room temperature and humidity monitoring based on IoT. A mobile phone can also monitor temperature and humidity and control fans. The DHT22 sensor can read temperature and humidity every two seconds so that the resulting data is stable to display. Then, the L298N motor driver can adjust the fan speed with Pulse Width Modulation (PWM) using analog data ranging from 1 to 1.024.
APA, Harvard, Vancouver, ISO, and other styles
17

Sathiabalan, Nivennesh A/L, Anis Farihin Mohamed Lokimi, Ong Zi Jin, et al. "Autonomous robotic fire detection and extinguishing system." Journal of Physics: Conference Series 2107, no. 1 (2021): 012060. http://dx.doi.org/10.1088/1742-6596/2107/1/012060.

Full text
Abstract:
Abstract Firefighting is a dangerous job with a high death rate. Robotics is the new way to protect the environment and human lives. This work proposes an autonomous robot system that can inevitably discover fire using the flame sensor and extinguish it. This project includes Arduino UNO, flame sensor, servo motor, motor driver, relay module, Bluetooth HC-06 module, and water pump. Besides, using the push Bluetooth app at the transmitting end, commands are sent to the receiver to control the robot’s movement. The motors are connected to the microcontroller and used to move the robot and sprinkle water on the fire. A water tank and a water pump are mounted on the robot body and automatically detected by the infrared. An ATMEGA328 series microcontroller controls the flame sensor and the whole operation. A motor driver IC, L298N, is interfaced to the microcontroller through which the controller drives the motors. As a result, the robot can detect fire from a distance. The average length for detecting flame is approximately 5.11cm, and Bluetooth transmission is about 300cm. It has the potential to reduce human error and limitations associated with fire extinguishing tasks.
APA, Harvard, Vancouver, ISO, and other styles
18

Oktaviani, Wulan, Sri Wahyu Suciyati, Gurum Ahmad Pauzi, and Junaidi Junaidi. "Design and Build a Drum Collector Using a Stepper Motor Arduino Based on Nanofiber Spinning Machine (Electrospinning)." Journal of Energy, Material, and Instrumentation Technology 3, no. 2 (2022): 39–43. http://dx.doi.org/10.23960/jemit.v3i2.68.

Full text
Abstract:
An Arduino-based stepper motor was used to create a nanofiber spinning machine. The hardware for this tool includes an Arduino Mega module, a 4x4 keypad, a TM1637 type seven-segment display, and L298N type stepper motor driver, a 17Hs4401 type stepper motor, a Pushbutton, and an ultrasonic sensor. The software utilized is the Arduino IDE, which is written in C. This tool's operating premise is that the Arduino processes input from the Keypad, and then the Stepper Motor Driver drives the stepper motor, which moves the collection drum up and down. The results of reading the tool will be presented in the seven segments in the form of RPM, altitude, and time. The tool has a height range of 1-10 cm, an RPM range of 10-100 RPM, and a time range of 1 minute to 1 hour. According to the test results, the tool has 99.8 percent accuracy at RPM, 99.92 percent accuracy at the time, and 97.89 percent accuracy at altitude.
APA, Harvard, Vancouver, ISO, and other styles
19

T., Gopu G. Vishnu I. Sam Benjamin N. Amarnath S. R. Vignesh. "Gesture Control Life Guard Robot Using Microcontroller." LC International Journal of STEM (ISSN: 2708-7123) 3, no. 1 (2021): 15–22. https://doi.org/10.5281/zenodo.6550736.

Full text
Abstract:
Gesture Control Life Guard Robot which will get back the human when fall in the sea to the sea shore controlled by the another man at the sea shore. The gesture control will reduce the complexity of the transmitter side. If any people at the sea shore can able to access the life guard robot to save the human life. ADXL335 can measures of x and y according to the hand gesture and send values to Ardino nano through wireless communication using NRF24L01 Transceiver module. Receives data through wireless communication using NRF24L01 to L298N motor driver. Arduino nano controls the motors through L298N motor drive and motors operate in respective ways. Life saver -saving life of human who fall in to the sea / lake /ocean / swimming pool/ amusement park. Gesture control– gesture control technology to reduce the complexity of transmitter side. Method used in our project is gesture control and wireless communication between two microcontroller. We have successfully done our project after facing many failures. By applying trial and error method we finish our project. By implementing our innovation in real time. No one will lose their life when they fell in the ocean. Our innovation can be implemented in the any places like sea, river, lake, swimming pool and amusement park. We have a new controlling technology in our innovation to make an easy control in the receiver side.
APA, Harvard, Vancouver, ISO, and other styles
20

Ni, Ni San Hlaing, and San Naing San. "Alarm System for Medicine Reminder Based on Microcontroller." International Journal of Trend in Scientific Research and Development 3, no. 5 (2019): 791–94. https://doi.org/10.5281/zenodo.3589726.

Full text
Abstract:
This paper investigates based on microcontroller medicine reminder alarm system. This system includes the DS1307 Real Time Clock RTC module, L298N motor driver, DC motor, I2C Liquid Crystal Display LCD module, four pushbuttons and buzzer. Arduino UNO is used to activate the whole system. Four types of push button enter the time for the person to take medicine. The clock module is used to set up time and LCD is used to display time for the taking medicine. The buzzer is used to alarm the time for taking medicine. The motor driver is used to drive the DC motor which controls the opening and closing function of the medical box. Ni Ni San Hlaing | San San Naing "Alarm System for Medicine Reminder Based on Microcontroller" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-3 | Issue-5 , August 2019, URL: https://www.ijtsrd.com/papers/ijtsrd26518.pdf
APA, Harvard, Vancouver, ISO, and other styles
21

PINAKI, SHASHISHEKHAR MATHAN. "ABHIMANYU: INTEGRATED SURVEILLANCE AND EXPLORATION ROVERS." Journal of Emerging Technologies and Innovative Research 11, no. 12 (2024): g531—g547. https://doi.org/10.5281/zenodo.14590843.

Full text
Abstract:
   The "Abhimanyu: Integrated Surveillance and Exploration Rovers" project introduces two innovative rover models, Abhimanyu α and Abhimanyu β, designed for versatile terrain navigation and enhanced surveillance capabilities. Abhimanyu α, the robust flagship model, features an ESP32 CAM module, a L298N motor driver, and six 100 RPM motors, enabling it to traverse both smooth and rugged surfaces, including staircases and rocks. Its camera, mounted on a pan-tilt mechanism, provides a wide surveillance range, while four 18650 batteries (2600mAh) power the system. Controlled via a phone app and enhanced with an antenna for extended signal range, Abhimanyu α also includes LED bulbs for visibility and signaling, powered by an 18650 battery.Abhimanyu β is a compact, agile rover equipped with similar technology, including an ESP32 CAM, L298N motor driver, and TT gear motors. It is powered by two 18650 batteries (2600mAh) for Locomotion system and an 18650 battery for LED signaling. Despite its smaller size, Abhimanyu β excels at navigating varied terrains and serves as a reliable backup to ensure mission continuity if Abhimanyu α is incapacitated. Both rovers can capture images and videos, storing them in a database for later review and analysis.This dual-rover system ensures redundancy and reliability, critical for successful surveillance and exploration missions. Controlled via a web interface hosted on the ESP32 CAM board, the rovers can be programmed for motion detection and alerts, making them ideal for home security, remote monitoring, and industrial surveillance.
APA, Harvard, Vancouver, ISO, and other styles
22

Nandkumar, Kotkar Shreya. "Voice Control Robotic Car." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 05 (2025): 1–9. https://doi.org/10.55041/ijsrem47394.

Full text
Abstract:
Abstract: This project aims to design and implement a voice-controlled robot car using an Arduino microcontroller. The robot car is controlled through voice commands via a smartphone app. providing a hands-free, intuitive driving experience. The system integrates an Arduino board with a Bluetooth module (HC-05) for communication, a motor driver (L298N) for controlling the motors, and a smartphone app with voice-to-text functionality. The user issues commands such as "forward," "backward," "left," "right," or "stop," which are processed by the smartphone app. These commands are sent to the Arduino, which then drives the motors accordingly. The project leverages the flexibility of Arduino and voice recognition technologies to allow for seamless interaction and remote operation of the robot car without the need for manual input, enhancing the user's convenience and making it suitable for various applications like automation, remote control vehicles, and robotics education. In this paper, we describe the hardware and software architecture, voice recognition algorithms, and demonstrate the working prototype of the voice-controlled robot car. The project showcases the potential of combining voice control with robotics and presents a user-friendly solution for controlling mobile robots. Keywords – Arduino UNO, Servo Motor, Spoken command in App, Bluetooth Sensor, Motor Driver
APA, Harvard, Vancouver, ISO, and other styles
23

Rama Krishna, Yarlagadda, Shaik Shakeel Pasha Ahmed, Syed Imran, and Syed Abdul Shaheed. "Automatic Water Supply and Monitoring Using IoT." Journal of Instrumentation and Innovation Sciences 8, no. 1 (2023): 27–33. http://dx.doi.org/10.46610/jiis.2023.v08i01.004.

Full text
Abstract:
The use of IoT technology in the water supply and monitoring system aims to tackle the issues of insufficient and unreliable water supply, as well as water wastage, prevalent in developing nations. The system comprises four sub-tanks, one overhead tank, an Arduino Uno board equipped with ultrasonic sensors to detect water level, an L298N motor driver module for regulating the submersible motor pump, and an ESP8266 Wi-Fi module for internet connectivity. The Firebase platform-based mobile app enables users to view the water levels in each tank and operate the motor. The water supply system is designed to manage the water supply efficiently, prevent water wastage, and ensure the water levels in all tanks are continuously monitored in real time. The four ultrasonic sensors measure the water levels, and the L298N motor driver module operates the submersible motor pump. The system regularly checks the water levels and activates the motor pump when the water level in any of the sub-tanks falls below a certain threshold level. Once the water level reaches the upper threshold level, the motor pump is deactivated. Users can view the water levels in all tanks on the mobile app and operate the submersible motor pump manually. This system provides a dependable and efficient approach to managing water supply, ensuring the water levels in each tank are continuously monitored and maintained in real time. The low-cost design makes this an affordable solution for water supply and monitoring in developing nations, promoting effective management of water resources.
APA, Harvard, Vancouver, ISO, and other styles
24

Hutasoit, Mispa. "Rancang Bangun Prototipe Pengontrol Pintu Garasi Berbasis Internet of Things (IoT) Dengan Platform Android." EINSTEIN 9, no. 1 (2021): 1. http://dx.doi.org/10.24114/eins.v9i1.33760.

Full text
Abstract:
Tujuan dari penelitian ini adalah untuk merancang prototype pengontrol pintu garasi mobil berbasis Internet of Things (IoT) sehingga bisa dikendalikan menggunakan android dan supaya informasi keadaan pintu garasi mobil ditampilkan pada android. Penelitian ini telah dilakukan dengan pengontrol menggunakan android dan Arduino Mega2560 sebagai mikokontroler yang berfungsi untuk membuat suatu alat pengontrol pintu garasi menjadi satu sistem pengontrolan yang dapat mengontrol buka tutup pintu dan kunci garasi tanpa harus kontak dengan garasi. Dalam sistem pengontrol yang dirancang menggunakan mikrokontroler arduino mega2560, ESP8266-01, motor driver L298N, relay, smartphone android, motor DC, solenoid door lock dan catu daya. Pintu dan kunci garasi mobil dikontrol menggunakan android dengan memanfaatkan aplikasi blynk dengan konektifitas WiFi melalui ESP8266-01 yang akan menyampaikan perintah dari android ke mikrokontroler arduino mega2560. Motor driver L298N digunakan untuk mengatur kecepatan dan arah dari motor DC sedangkan relay digunakan sebagai saklar dari solenoid door lock. Berdasarkan hasil pengujian sistem pengontrolan pintu garasi mobil dengan smartphone android bekerja dengan baik. Pengontrolan yang dilakukan yaitu pengontrolan buka dan tutup pintu garasi mobil serta pengontrolan buka dan tutup kunci pintu garasi mobil. Jarak maksimum yang dapat dikontrol yaitu 20 meter dengan waktu maksimum 1 detik. Untuk buka dan tutup pintu garasi dengan menggunakan PWM (Pulse Width Modulation) sebesar 85 byte per sekon sehingga duty cycle-nya adalah 33%
APA, Harvard, Vancouver, ISO, and other styles
25

Sirohi, Sonam, Mohit kumar, Syed Fayequeuddin, and Sheikh Majid. "Autonomous Robotic System for Identifying and Extinguishing Fire." International Journal of Innovative Research in Advanced Engineering 11, no. 05 (2024): 678–81. http://dx.doi.org/10.26562/ijirae.2024.v1105.37.

Full text
Abstract:
Putting out fires is a hazardous profession with a high death rate. The new approach to preserving both the environment and human life is robotics. This work suggests an autonomous robot system that uses a flame sensor to invariably detect and put out fires. The Arduino UNO, water pump, servo motor, motor driver, relay module, Bluetooth HC-06 module, and flame sensor are all part of this project. In addition, the robot's mobility is controlled by commands transmitted to the receiver via the push Bluetooth app on the transmitting end. The robot moves and the fire is doused with water thanks to the motors that are attached to the microcontroller. The robot body has a water pump and tank that are automatically identified by the infrared. The flame sensor and the entire system are managed by a microprocessor from the ATMEGA328 series. The microcontroller and a motor driver integrated circuit (L298N) are interfaced so that the controller may drive the motors. The robot can therefore sense fire at a distance. Around 5.11 cm is the average length for detecting flame, and 300 cm is the typical length for Bluetooth transmission. It might lessen constraints brought on by human mistake and fire extinguishing tasks.
APA, Harvard, Vancouver, ISO, and other styles
26

Y, Alauddin, Zaldi Zaldi, and Muhammad Zainal. "Perancangan Sistem Kendali dan Navigasi pada Prototype Unmanned Survace Vehicle (USV)." Jurnal Mosfet 3, no. 1 (2023): 10–17. http://dx.doi.org/10.31850/jmosfet.v3i1.2313.

Full text
Abstract:
enelitian ini dilatar belakangi oleh perkembangan teknologi pada saat ini yaitu, suatu alat yang dapat mobile dan bernavigasi di permukaan air, berupa prototype perahu dan juga dikenal dengan sebutan unmanned surface vehicle (USV). Berdasarkan latar belakang tersebut maka, tujuan dari penelitian ini yaitu menggunakan jenis penelitian eksperimen yang bertujuan untuk mengetahui rancangan sstem mekanik prototype, rangkaian elektronika dan kendali serta rancangan sistem kendali pergerakan USV. Dengan menggunakan metode peneltian ekperimental yakni perancangan sistem dan pembuatan alat sebagai media penelitian, perancangan alat ini menggunakan rangkaian Remote kontrol, mikrokontroler Arduino Mega 2560, mikrokontroler Arduino Nano, rangkaian modul wireless NRF24L01, rangkaian joystick Arduino, rangkaian driver motor L298N, rangkaian LCD I2C, dan rangkaian motor dc. Dari alat yang dirancang Arduino Nano akan menerima dan mengolah data dari joystick kemudian dikirim melalui transmitter NRF24L01 pada Remote kontrol. Kemudian diterima oleh receiver NRF24L01 pada prototype USV. Data yang diterima oleh receiver akan di olah Arduino Mega 2560. Selanjutnya data dikirim ke Driver Motor L298N. Driver tersebut akan mengatur kecepatan motor DC dengan teknik PWM (Pulse Width Modulation). Hasil penelitian pengujian perancangan sistem kendali dan navigasi pada prototype USV yaitu pengujian Remote kontrol dan pergerakan prototype USV, ada 6 pergerakan yang akan dilakukan yaitu pengujian pergerakan maju, pergerakan mundur, pergerakan belok kanan, pergerakan belok kiri, pergerakan berputar ke kanan, dan pergerakan berputar ke kiri. pengujian kedua yaitu pengujian yang bertujuan untuk mengetahui seberapa jauh jarak maksimal terhubung antara kedua modul komunikasi NRF24L01 dan hasil yang didapatkan yakni jarak maksimal 80 meter tanpa penghalang dan jarak 60 meter ketika ada penghalang.
APA, Harvard, Vancouver, ISO, and other styles
27

Anupama Mathan, Saswati. "VIRO: 360 Degree Real-Time Surveillance." International Scientific Journal of Engineering and Management 04, no. 04 (2025): 1–7. https://doi.org/10.55041/isjem02709.

Full text
Abstract:
VIRO: 360 Degree Real-Time Surveillance is a compact mobile surveillance system that combines robotics with IoT-based video monitoring to enhance real-time security. The system features TT gear motors for smooth navigation in all directions and a caster wheel for added stability. An ESP32 camera captures live video, while the L298N motor driver controls movement, making VIRO agile and responsive. LED bulbs mounted on the chassis improve visibility in low-light conditions, enabling efficient operation during nighttime. The ESP32 module hosts a local web server accessible through Wi-Fi (IP: 192.168.4.1), allowing users to remotely control the robot and stream real-time video on mobile devices. The user interface is developed using HTML and Arduino libraries such as esp_camera.h and ESPAsyncWebServer.h, ensuring smooth and interactive control. Powered by dual 18650 batteries, the system is portable and energy-efficient. VIRO is ideal for applications in home security, industrial monitoring, and event surveillance, providing flexibility, mobility, and real-time situational awareness. This project demonstrates the effective integration of robotics, wireless communication, and embedded systems, highlighting the potential of IoT in modern surveillance technology. It offers an innovative, scalable solution to evolving security challenges in both personal and professional environments. Key Words: VIRO, real-time surveillance, robotics, mobile surveillance unit, TT gear motors, ESP32 camera, L298N motor driver, web server, remote control, live feeds, LED bulbs, low-light visibility, Arduino libraries, user-friendly interface, dual 18650 batteries, security monitoring, Internet of Things, IoT solutions, intelligent surveillance systems, technological advancements.
APA, Harvard, Vancouver, ISO, and other styles
28

Hilal, Yusuf Nurul, Trias Andromeda, and Susatyo Handoko. "Pengatur Kecepatan Prototipe Mesin Solenoid 4 Induktor Menggunakan Metode Kontrol Frekuensi." Elektrika 13, no. 2 (2021): 59. http://dx.doi.org/10.26623/elektrika.v13i2.4258.

Full text
Abstract:
<p class="JOURNALBODY"><em>The development of electric vehicles is in rapid progress, especially in terms of the main engine drive. The use of solenoid can be applied as an alternative driving electric vehicles instead of a dc motor as the main driver. In this paper, the prototype solenoid machine is applied by using 4 inductors controlled by an Arduino microcontroller and the solenoid driver based on application of Mosfet L298N. The prototype runs successfully. Based on the experimental results, the greater the frequency value applies to the driver, the faster the solenoid moves. The acceleration occures due to the electromagnetic field which is getting stronger and the field is proportional to the frequency value, so the solenoid movement is faster.</em></p>
APA, Harvard, Vancouver, ISO, and other styles
29

Shivani, S. "IOT Based Speed Control System for Electric Vehicle." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 06 (2025): 1–9. https://doi.org/10.55041/ijsrem49911.

Full text
Abstract:
ABSTRACT This project presents an Arduino Uno-based smart monitoring and control system for electric vehicles (EVs), integrating key sensors and modules to enhance vehicle safety and performance. The system includes a voltage sensor to monitor battery levels, a GPS module for real-time location tracking, a temperature sensor to detect overheating, and a Bluetooth module for wireless communication with mobile devices. These inputs are processed by the Arduino Uno, which controls outputs such as an LCD for displaying data, a buzzer for alerts, and a motor driver (L298N) for controlling the vehicle motor. The system alerts users when abnormal conditions are detected, such as high temperature or low battery voltage, ensuring safety through timely warnings. The inclusion of GPS and Bluetooth connectivity allows for enhanced tracking and user interaction. This prototype demonstrates the potential for affordable, real-time EV monitoring, contributing to safer, smarter transportation systems with improved diagnostics and preventative maintenance capabilities. Keywords: Arduino Uno, Bluetooth Module, LCD, L298N, GPS, Voltage Sensor, Temperature Sensor
APA, Harvard, Vancouver, ISO, and other styles
30

Nurhidayati, Dewi, and Riki Mukhaiyar. "Robot Pintar Penerima Pesanan Berbasis Suara." JTEIN: Jurnal Teknik Elektro Indonesia 4, no. 2 (2023): 934–39. http://dx.doi.org/10.24036/jtein.v4i2.531.

Full text
Abstract:
Pelanggan merupakan nyawa dari setiap bisnis yang dibangun. Bisnis tidak akan tumbuh dengan besar tanpa adanya dukungan dan dorongan dari pelanggan yang mempercayakan kebutuhan mereka kepada bisnis tersebut. Seperti pada bisnis restoran, salah satu cara mendapatkan kepercayaan dari pelanggan yakni pelayanan dengan cepat dan tepat. Permasalahan yang biasa dihadapi pada bisnis restoran yakni lambatnya penerimaan pesanan ke meja konsumen, mengakibatkan konsumen kurang puas, dikarenakan pelayan mempunyai double job yang harus menerima pesanan dan mengantarkan pesanan ke meja konsumen. Namun dengan adanya teknologi di bidang robotik, kini masalah tersebut bisa diatasi. Oleh karena itu, dibuatkan sebuah alat yang bertujuan untuk dapat merancang dan memonitoring sistem robot pintar penerima pesanan berbasis suara dengan inputan sensor photodiode, sensor ultrasonik dengan output driver motor L298N dan LCD melalui Arduino Mega2560. Diaktifkan dengan perintah suara melalui Aplikasi smartphone berupa kata meja 1, meja 2, dan meja 3. Kemudian motor pada robot berjalan menuju meja pelanggan mengikuti garis dan pelanggan memilih menu pada LCD dan akan terkirim menuju Aplikasi smartphone melalui WiFi menuju database. Setelah melakukan pengujian dan analisa terhadap sistem robot pintar penerima pesanan berbasis suara dengan inputan sensor photodiode, sensor ultrasonik dengan output driver motor L298N dan LCD dapat diambil kesimpulan bahwa sistem robot telah dapat bekerja dengan baik sesuai dengan rancangan prinsip kerja dan hasil yang dicapai sesuai fungsi serta kerja alat.
APA, Harvard, Vancouver, ISO, and other styles
31

Kyaw, Zin Latt, Htike Aung Than, and Min Min Htun Zaw. "PC Based DC Motor Speed Control using PID for Laboratory." International Journal of Trend in Scientific Research and Development 3, no. 5 (2019): 2398–400. https://doi.org/10.5281/zenodo.3591517.

Full text
Abstract:
In this paper, PC based DC motor speed control using PID proportional, Integral, derivative control algorithm for laboratory. Arduino Uno microcontroller and L298N hybrid motor driver module are used to drive the dc motor. PID algorithm is uploaded to arduino and proportional gain kp , Integral gain ki , and derivative gain kd can be set and tuned via windows form application in computer. This application is developed by using c programming. The desired speed and PID gains are set by computer and drive the DC motor. The speed of the motor can retrieve by using encoder which is included in DC motor. By using this work, student can learn how to control the speed of DC motor using PID controller and how to tune the gains. Kyaw Zin Latt | Than Htike Aung | Zaw Min Min Htun "PC Based DC Motor Speed Control using PID for Laboratory" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-3 | Issue-5 , August 2019, URL: https://www.ijtsrd.com/papers/ijtsrd27898.pdf
APA, Harvard, Vancouver, ISO, and other styles
32

Gustama, Ario, Ridwan Satrio Hadikusuma, and Rahmat Hidayat. "Utilization of PWM Signals in Automatic Parking Gate Speed Control Using PID System Modeling." JTEV (Jurnal Teknik Elektro dan Vokasional) 10, no. 1 (2024): 29. http://dx.doi.org/10.24036/jtev.v9i2.115893.

Full text
Abstract:
Utilization of signals (Pulse Width Modulation) on the l298n motor driver and PID controller (Proportional Integral Derivative) is often used in industries, especially those that require robots as their automation medium, so that a process in robot automation does not only design system modeling, but is also required to implement a control system. angular position on a DC motor using the PID model. The PID control system in this study utilizes speed control with a PWM signal in the l298n motor driver and is applied as a DC motor angle position control module which is used for the parking doorstop system. The use of the trial error method is a suitable choice to be applied in finding values for the PID position control. This system keeps the speed and position in accordance with the set point when given a load as well as the ability of the system to catch up with the speed and position in order to reach the set point when the motor starts running are very important factors as a measure of speed and position control performance. because of its effectiveness, in the implementation of the parking gate latch produces a standard configuration of the PID controller with parameters Kp, Ki and Kd that can be determined so that the plant characteristics match the expected design criteria. In the trial error method, the most effective value was obtained with Kp = 10, Ki, 1.9 and Kd = 0.8 which resulted in steady state and no overshoot.
APA, Harvard, Vancouver, ISO, and other styles
33

Rambani, Burhanudin Raya, Amin Widodo, Agung Indarto, Ibnu Hagi Kencono, Muhamad Alfi Nurohman, and Siti Jamilatun Rofiqoh. "Rancang Robot Avoider Menggunakan Mikrokontroler Arduino UNO dan Sensor Ultrasonik." Journal Information & Computer 3, no. 1 (2025): 13–20. https://doi.org/10.32493/jicomisc.v3i1.41292.

Full text
Abstract:
Praktikum ini bertujuan untuk merancang dan mengembangkan robot avoider yang mampu mendeteksi dan menghindari rintangan secara otomatis. Robot ini menggunakan Arduino Uno sebagai mikrokontroler utama yang mengendalikan sensor ultrasonik untuk mendeteksi jarak, motor servo untuk mengarahkan sensor, serta motor DC yang dikendalikan oleh driver motor L298N untuk menggerakkan roda. Proses pembuatan melibatkan perakitan rangkaian elektronik, pemrograman mikrokontroler, dan pengujian fungsionalitas sistem. Hasilnya, robot mampu merespons perubahan lingkungan dengan cepat dan menghindari tabrakan dengan akurasi tinggi. Praktikum ini tidak hanya memberikan wawasan teknis mengenai pembuatan sistem robotik, tetapi juga melatih keterampilan analisis dan pemecahan masalah peserta, serta menjadi dasar bagi pengembangan proyek robotik lebih lanjut.
APA, Harvard, Vancouver, ISO, and other styles
34

Dextiro, Kadek Deksy, I. Made Agus Dwi Suarjaya, and Kadek Suar Wibawa. "Rancang Bangun Sistem Smart Gate Pada Parkir Sepeda Motor Menggunakan Sensor Ultrasonik dan MQTT Berbasis Internet of Things." JITTER : Jurnal Ilmiah Teknologi dan Komputer 5, no. 2 (2024): 2167. http://dx.doi.org/10.24843/jtrti.2024.v05.i02.p04.

Full text
Abstract:
Tempat parkir dan sistem pengaturannya sangat penting dalam penyediaan layanan di fasilitas umum. Sistem parkir yang efisien meningkatkan kenyamanan penggunaan fasilitas umum. Penelitian ini bertujuan untuk merancang sistem smart gate pada parkir sepeda motor menggunakan sensor ultrasonik dan kamera guna meningkatkan keamanan, kenyamanan, dan kemudahan. Pendekatan yang digunakan adalah metode waterfall, yang detail dan terstruktur karena setiap tahap harus diselesaikan sepenuhnya sebelum melanjutkan ke tahap berikutnya. Alat yang digunakan meliputi ESP32, sensor ultrasonik HC-SR04, motor driver L298N, motor DC, ESP32-CAM, dan power supply 12V. Hasil penelitian ini adalah sistem smart gate yang mampu memonitor jumlah motor masuk, keluar, dan yang ada di area parkir, serta menangkap gambar pengendara motor yang keluar untuk meningkatkan keamanan, dengan hasil gambar disimpan di dashboard website.
APA, Harvard, Vancouver, ISO, and other styles
35

Arnab, Saha. "Obstacle Avoidance & Light Following Robot." International Journal of Advances In Scientific Research and Engineering (IJASRE) 3, no. 4 (2017): 162–75. https://doi.org/10.5281/zenodo.583843.

Full text
Abstract:
<em>Obstacle avoidance &amp; light following robot can be used for Industrial purpose &amp; Military operation. The major components include an Arduino Uno R3, Servo motor, BO motor, L298N motor driver, LDR module, Ultrasonic HCSR-04 sensor &amp; holder, Chassis body, Battery &amp; battery holder. The system is controlled by the Arduino Uno R3 module which is an advance version of a microcontroller and a part of embedded system. In this work, we have designed a robot, which is compact, autonomous and fully functional. It is a proposed model which can be used in such an environment, which may be vulnerable and risky to human being. It has four types of functions. The functions are light following, obstacle detection and controlling from an android device through Bluetooth or Wi-Fi module&amp; capture the video clips of that area. Obstacle avoider light follower robot detects the light (such as the light of flashlight) and follows light on travelling path. Also it can detect the obstacles while it is moving and make the passes by the obstacles. The robot has two light detection sensors which are prepared with LDRs and an infrared obstacle detecting sensor. The sensitivity of the light sensor can be set by using the trim pots.</em> <strong><em>K</em></strong><strong><em>eywords</em>: </strong><em>Robot </em><em>Sensing System DC motors, Smart Phones, Motor Driver.</em>
APA, Harvard, Vancouver, ISO, and other styles
36

Surya Prasetyo, Adhe, and Hasan Hasan. "Rancang Bangun Sistem Transfer Layout PCB Berbasis Arduino Uno R3." Electrical Network Systems and Sources 3, no. 2 (2024): 92–96. https://doi.org/10.58466/entries.v3i2.1638.

Full text
Abstract:
Sistem transfer layout PCB merupakan proses perpindahan tinta pada kertas menuju papan PCB untuk menghasilkan jalur komponen. Proses transfer layout PCB merupakan peran penting dalam desain sirkuit elektronik. Proses transfer layout PCB biasanya digunakan menggunakan setrika memakan waktu yang cukup lama. Penelitian ini merupakan pembuatan alat yang bertujuan meningkatkan efisiensi dalam melakukan proses transfer layout PCB proses perpindahan tinta dari kertas menuju papan PCB yang dapat diatur waktu proses transfer dengan ketentuan waktu yang diatur oleh pengguna. Hasil dari penelitian sistem transfer layout PCB menggunakan mikrokontroller Arduino UNO, sensor suhu thermocouple, LCD 20 x 4, Motor DC, Driver Motor L298N, Driver MAX 6675, Plat Pemanas, Rotary Encoder, dan Relay Module 2 Channel. Sistem ini memberikan solusi semi otomatis yang efektif dalam proses transfer layout PCB. Kata kunci : Transfer Layout PCB, Sistem Transfer, PCB, Proses Transfer.
APA, Harvard, Vancouver, ISO, and other styles
37

Adhe Putri, Shintya, A. Asni B, and Aswadul Fitri Saiful rahman. "Perancangan Prototype Mesin Pembersih kabel transmisi listrik berbasis internet." Jurnal Teknik Elektro Uniba (JTE Uniba) 4, no. 1 (2019): 12–17. http://dx.doi.org/10.36277/jteuniba.v4i1.48.

Full text
Abstract:
This research on the tittle “ DESIGNING PROTOTYPE CLEANING MACHINE IN INTERNET- BASED ELECTRIC TRANSMISSION CABLE “ this theses to eassly cleaning lines transmission cable from the dirt of lines cable transmission used by Arduino UNO, as a first component, L298N as a Driver Motor Electric fuction to movers motor dynamo. This tools have a cleaning can cleaning at line cable transmission with the mover cutting motor dynamo, that tools cutiing direct clockwise and the opporside.Based on the tool teste of cutting materials made from arcylyric its not efisiens on cutting all the hard dirt concern at transmission cable. While of the materials made from grinda is more efisien in cutting and concern hard dirt at transmission cable .
APA, Harvard, Vancouver, ISO, and other styles
38

Yogeshwaran, C. "IOT – Enabled ATM." International Journal for Research in Applied Science and Engineering Technology 13, no. 3 (2025): 1506–13. https://doi.org/10.22214/ijraset.2025.67549.

Full text
Abstract:
This paper presents an IoT-enabled ATM system designed for accessibility and seamless digital transactions. Built around an ESP32 microcontroller, the system integrates WhatsApp Pay for payments and uses an IR sensor to detect users, triggering voice-assisted instructions for visually or motor-impaired individuals. Users select a predefined amount (₹50, ₹100, ₹200, or ₹500) via a locally hosted webpage, complete the payment via WhatsApp Pay, and receive cash dispensed by a BO motor controlled by an L298N motor driver. Real- time feedback is provided on a 16x2 LCD, and transaction data is logged to Firebase Realtime Database. The system is low-cost, standalone, and user-friendly, making it ideal for individuals with disabilities, small businesses, and rural areas.
APA, Harvard, Vancouver, ISO, and other styles
39

Shelke, Mayur S., Nikhilkumar P. Chichghare, Ankit M. Maske, and Sneha M. Panware. "Design of IoT Enabled Grass Cutter Robo-Car." International Journal for Research in Applied Science and Engineering Technology 12, no. 5 (2024): 2593–99. http://dx.doi.org/10.22214/ijraset.2024.62145.

Full text
Abstract:
Abstract: The IoT Enabled Grass Cutter Robo-Car project represents a transformative leap in the realm of lawn maintenance, merging cutting-edge robotics with the expansive capabilities of the Internet of Things (IoT). At its core, this project introduces a state-of-the-art Robo-Car, meticulously engineered to be remotely controlled through an Android application. The crux of the communication infrastructure is a web server, with the ESP8266 serving as the linchpin by receiving signals from the server. These signals orchestrate the nuanced operations of a L298N motor driver, steering the precise movement of 100 RPM motors, and a relay module that commands the activation of the grass cutter motor. With a vision to redefine the landscape of lawn care, this project stands as an exemplar of efficiency, convenience, and remote accessibility in the realm of smart agriculture.
APA, Harvard, Vancouver, ISO, and other styles
40

Shelke, Mayur S., Nikhilkumar P. Chichghare, Shreyash U. Bondre, Ankit M. Maske, Bhavesh R. Pounikar, and Sneha M. Panware. "IoT Enable Grass Cutter Robot - Car." International Journal for Research in Applied Science and Engineering Technology 12, no. 1 (2024): 621–25. http://dx.doi.org/10.22214/ijraset.2024.58021.

Full text
Abstract:
Abstract: The IoT Enabled Grass Cutter Robo-Car project represents a transformative leap in the realm of lawn maintenance, merging cutting-edge robotics with the expansive capabilities of the Internet of Things (IoT). At its core, this project introduces a state-of-the-art Robo-Car, meticulously engineered to be remotely controlled through an Android application. The crux of the communication infrastructure is a web server, with the ESP8266 serving as the linchpin by receiving signals from the server. These signals orchestrate the nuanced operations of a L298N motor driver, steering the precise movement of 100 RPM motors, and a relay module that commands the activation of the grass cutter motor. With a vision to redefine the landscape of lawn care, this project stands as an exemplar of efficiency, convenience, and remote accessibility in the realm of smart agriculture.
APA, Harvard, Vancouver, ISO, and other styles
41

Iqbal, Mohd, Muhammad Ricky Hasyim, and Muhammad Akbar Iqvi. "Pengontrolan Robot Beroda Menggunakan NODEMCU Dikendalikan Melalui Handphone Android." Journal of Information System and Technology 5, no. 3 (2024): 37–44. https://doi.org/10.37253/joint.v5i3.10003.

Full text
Abstract:
Penelitian ini bertujuan untuk mengembangkan sistem pengontrolan robot beroda menggunakan NodeMCU ESP8266 yang dapat dikendalikan secara nirkabel melalui aplikasi Android. Sistem ini menggunakan koneksi Wi-Fi untuk memungkinkan komunikasi antara aplikasi Android dengan robot beroda yang dikendalikan melalui NodeMCU. Robot beroda ini dilengkapi dengan dua motor DC yang menggerakkan roda robot dan motor driver L298N untuk mengatur arah serta kecepatan pergerakan robot. Dengan implementasi aplikasi Android, pengguna dapat mengendalikan robot dari jarak jauh, memberikan kontrol fleksibel dan mudah diakses. Dalam penelitian ini, pengujian dilakukan untuk mengevaluasi performa sistem dari segi kestabilan koneksi, waktu respons, dan akurasi pergerakan robot beroda dalam merespons perintah yang diberikan.
APA, Harvard, Vancouver, ISO, and other styles
42

Halim, Levin, and Muhammad Fadhilah Sudrajat. "PERANCANGAN AWAL DAN ANALISIS KINEMATIKA PURWARUPA MESIN JACRO." J-ENSITEC 9, no. 01 (2022): 725–33. http://dx.doi.org/10.31949/jensitec.v9i01.3074.

Full text
Abstract:
Pengeboran merupakan sebuah kegiatan membuat lubang vertikal ke dalam tanah. Pengeboran dapat dilakukan di mana saja, contohnya tanah, tebing, gua dan lainnya. Pengeboran memiliki resiko kerja yang tinggi, terlebih lagi pengeboran di dalam gua. Dengan tingginya resiko pekerjaan tersebut maka dibuat purwarupa untuk melihat pergerakan mesin dalam keadaan wireless. Purwarupa ini terdapat beberapa kompo- nen yang dibutuhkan, yaitu arduino uno, driver motor L298N, NRF24L01+, motor DC, motor stepper dan modul ULN2003A. Purwarupa ini di analisa dengan metode kinematika forward. Purwarupa ini memiliki desain awal yang dibagi menjadi tiga, yaitu track, rig dan base. Pada bagian kinematika, diagram benda bebas di tentukan arah vektor. Kemudian setelah arah vektor ditentukan, tabel DH dapat ditentukan. Setelah itu tabel DH dapat dijadikan input untuk simulasi MATLAB
APA, Harvard, Vancouver, ISO, and other styles
43

Nale, Ashumal V. "Temperature Based Fan Speed Control Using Arduino." International Journal for Research in Applied Science and Engineering Technology 13, no. 5 (2025): 1758–63. https://doi.org/10.22214/ijraset.2025.70616.

Full text
Abstract:
Abstract: In this project, we present an efficient temperature-based speed control system for a DC motor using an Arduino microcontroller. The system is designed to automatically regulate the speed of the motor in response to temperature variations, making it suitable for applications like cooling systems, industrial automation, and smart appliances. The system consists of a temperature sensor (such as an LM35 or DHT11) that continuously monitors the ambient temperature and sends data to the Arduino. Based on predefined threshold values, the Arduino processes the d and adjusts the motor speed accordingly using a PWM (Pulse Width Modulation) signal. A motor driver (L298N or MOSFET-based circuit) is used to control the DC motor efficiently. This automation eliminates manual intervention, optimizes energy consumption, and enhances system performance. The proposed design is cost-effective, easy to implement, and adaptable to various applications where temperature-dependent motor control is required
APA, Harvard, Vancouver, ISO, and other styles
44

Firmansya, Eliyana, Syahban Rangkuti, and Andri Fitriyadi. "RANCANG BANGUN SISTEM KENDALI ROBOT LENGAN 6 DERAJAT KEBEBASAN BERBASIS INTENET OF THINGS." Jurnal Komputasi 12, no. 1 (2024): 81–90. http://dx.doi.org/10.23960/komputasi.v12i1.251.

Full text
Abstract:
Abstract — Robotics technology has developed very rapidly at this time. Various advanced technologies have replaced manual equipment that requires a lot of human power to operate, one of which is using robots. In this research, a robot arm control system with 6 degrees of freedom will be designed. There are many applications or applications of this robotic arm in the industrial world, including moving goods to places that are dangerous or cannot be entered by humans. The 6 degrees of freedom robot arm uses two servo motor units and 4 DC motor units as its driving force, where all the motors used can move individually or simultaneously. In order to be able to move the robot arm according to the commands given, various electronic devices are needed, including a DC motor drive module type L298N motor driver, an Arduino Mega 2560 microcontroller module to move the motor the commands received, and an ESP8266 NodeMCU which functions as data communication using technology internet of things. This robot arm can be controlled using a smartphone or computer via an application that has been built into it. The data communication that will be used to apply internet of things technology to the robot arm control system is the MQTT protocol. By using the MQTT protocol, control systems can be developed easily using a web server application.
APA, Harvard, Vancouver, ISO, and other styles
45

Amin, Muhammad, Ricki Ananda, and Juna Eska. "ANALISIS PENGGUNAAN DRIVER MINI VICTOR L298N TERHADAP MOBIL ROBOT DENGAN DUA PERINTAH ANDROID DAN ARDUINO NANO." JURTEKSI (Jurnal Teknologi dan Sistem Informasi) 6, no. 1 (2019): 51–58. http://dx.doi.org/10.33330/jurteksi.v6i1.396.

Full text
Abstract:
Abstact: A robot is a set of mechanical devices or shaped vehicles that can perform physical tasks, both with human supervision and control, in the form of programs that have been defined in advance. Robot cars designed by researchers, use two commands to perform physical tasks. First use the command from Google Voice, which is the command with voice, and the second uses the command using the Android button, so that access to the robot can be done by anyone and anywhere. The work system of the robot car design is designed, when the robot car commands, the command will be juxtaposed or compared, and when the data is compared according to the data being controlled, the system will run according to the data or command earlier. For each module, it uses a voltage of 5V, while for a DC motor, it uses an external voltage of 7.4 VDC. Keyword: Robot car, Arduino controller, Google voice. Abstrak: Robot merupakan seperangkat alat mekanik atau berbentuk kendaraan yang bisa melakukan tugas fisik, baik dengan pengawasan dan kontrol manusia, berupa program yang telah didefisinikan terlebih dahulu. Mobil robot yang dirancang peneliti, menggunakan dua perintah untuk melakukan tugas fisik. Pertama menggunakan perintah dari google voice, yaitu perintah dengan suara, dan yang kedua menggunakan perintah menggunakan tombol button android, sehingga akses untuk memerinta robot dapat dilakukan oleh siapa saja dan dimana saja. Sistem kerja dari rancangan mobil robot yang dirancang, ketika mobil robot memberi perintah, maka perintah tersebut akan disandingkan atau dibandingkan, dan ketika data yang dibandingkan sesuai dengan data yang dicontroller, maka sistem akan berjalan sesuai dengan data atau perintah tadi. Untuk setiap modul, menggunakan tegangan 5V, sedangkan untuk motor DC, menggunakan tegangan eksternal sebesar 7.4 VDC. Kata Kunci: Mobil robot, controller arduino, google voice.
APA, Harvard, Vancouver, ISO, and other styles
46

Fandidarma, Bayu, Ridam Dwi Laksono, and Krisna Warih Bintang Pamungkas. "Rancang Bangun Mobil Remote Control Pemantau Area berbasis IoT menggunakan ESP 32 Cam." ELECTRA : Electrical Engineering Articles 2, no. 1 (2021): 31. http://dx.doi.org/10.25273/electra.v2i1.10522.

Full text
Abstract:
&lt;span class="fontstyle0"&gt;Mobil Remote Control (RC) ini dirancang guna untuk membantu tim relawan dalam mencari korban bencana alam gempa bumi dan juga mengurangi resiko tim relawan jika terjadi sesuatu yang tidak diinginkan. Mobil RC ini dikendalikan oleh IoT dari ESP 32 Cam yang menjadi otak dari sebuah mobil RC ini dari analisis yang di dapatkan mobil bergerak dengan lancar dan tidak ada masalah dan semua fungsi nya berjalan dengan lancar. Driver L298N sebagai penggerak motor dc untuk dapat berjalan maju, mundur, kanan, kiri.&lt;/span&gt; &lt;br /&gt;&lt;br /&gt;
APA, Harvard, Vancouver, ISO, and other styles
47

Priya S, Krishna. "Smart Continuous Passive Motion for Hand Rehabilitation." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 05 (2025): 1–9. https://doi.org/10.55041/ijsrem47271.

Full text
Abstract:
ABSTRACT Continuous Passive Motion (CPM) devices are essential tools in post-operative and neurological rehabilitation. This paper presents the design and implementation of a cost-effective, smart CPM device for hand rehabilitation using embedded systems. The device automates passive hand movements through a linear actuator controlled by a Node MCU microcontroller and L298N motor driver. The system is equipped with safety features such as limit switches and a real-time OLED display interface for enhanced usability. Experimental evaluation demonstrates reliable and repeatable motion, making the device suitable for home-based therapy in low-resource settings.
APA, Harvard, Vancouver, ISO, and other styles
48

Musthofa, Fikri, and Heru Winarno. "SISTEM DESELERASI KECEPATAN OTOMATIS PADA MOBIL BERDASARKAN JARAK MENGGUNAKAN SENSOR ULTRASONIK HC-SR04 BERBASIS ARDUINO MEGA 2560." Gema Teknologi 18, no. 3 (2015): 110. http://dx.doi.org/10.14710/gt.v18i3.21933.

Full text
Abstract:
Fikri Musthofa, Heru Winarno, in this paper explain that along with the high number of accidents on the highway at this time of course must be a special concern for motorists. There are many factors that underlie the occurrence of an accident in driving, the most important of which is the factor of driver error in driving, such as drowsiness or lack of rest, lack of concentration, and much more. Besides the security system in vehicles is also very influential in reducing the number of accidents in driving. With the development of today's technology, it is necessary to create a speed deceleration system on the motor based on the distance to the barrier objects in front of the vehicle using ultrasonic sensors. Ultrasonic sensor which is a type of proximity sensor is a sensor that can detect distances so that it can be used as a sensor in this system. This system can reduce motor speed automatically when the sensor detects a barrier object in front with a distance of less than 300 cm. This system will be active when the ultrasonic sensor detects a distance of less than 300 cm. At that distance the Arduino Mega 2560 will adjust the PWM value of the motor, the motor PWM value will decrease 12% every second so that within a period of 8 seconds the motor will have a speed of 0 rpm which means the motor will stop. This system is expected to reduce the number of road accidents due to motorists' faults. Keywords: Speed Deceleration, PWM Method, Ultrasonic Sensor, Arduino Mega 2650.ReferencesAgus Setya Abadi, Delta. 2008. Sensor Ultrasonic Sebagai Alat Navigasi Robot Pemadam Api.. Tugas Akhir PSD III Teknik Elektro (Tidak diterbitkan) Semarang : Universitas Diponegoro.Anonimus. 2012. Sensor Ultrasonic HC-SR04. Diunduh dari http://arduino- learning.com/code/hc-sr04-ultrasonic-sensor-example.php diakses pada 1 Juni 2015 pukul 14.30 WIB.Anonimus. 2013. Rangkaian Skematik Driver Motor L298N. Diunduh dari http://www.yujum.com/rangkaian-dan-skematik-driver-motor-l298n/ diakses pada 17 Juni 2015 pukul 19.45.Anonimus. 2014. Accumulator atau Aki dan jenisnya. Diunduh dari http://www.sandielektronik.com/2014/03/accumulator-atau-aki.html diakses pada 30 Mei 2015 pukul 16.15 WIB.Prayogo, Rudito. 2012. Pengaturan PWM dengan PLC. Tugas Mata Kuliah Teknik Otomasi (Tidak diterbitkan). Malang: Universitas Brawijaya.Riny Sulistyowati. 2012. Perancangan Prototype System Kontrol Dan Monitoring Pembatas Daya Listrik Berbasis Mikrokontroler. Surabaya : Institut Adhi Tama Surabaya.Surono. 1988. Tata Tulis Karya Ilmiah Bahasa Indonesia. Semarang : Fakultas Sastra Universitas Diponegoro.
APA, Harvard, Vancouver, ISO, and other styles
49

Prayitno, Joni, and Harso Kurniadi. "Pembuatan Sistem Kendali Robot Menggunakan Kamera Berbasis Android." CAHAYAtech 7, no. 1 (2019): 12. http://dx.doi.org/10.47047/ct.v7i1.2.

Full text
Abstract:
Seiring berkembangnya dan percepatan teknologi, manusia membutuhkan bantuan dari sesuatu yang dapat bekerja fleksibel, teliti dan tidak mengenal lelah ketika tenaga manusia tidak memungkinkan untuk melakukannya, maka robot adalah jawaban dari permasalahan tersebut. Dalam dunia kemiliteran dan pengamanan sendiri bisa dicontohkan seperti robot pengintai yang dapat digunakan untuk memantau situasi di suatu area yang tidak terjangkau manusia, baik untuk tujuan pengawasan, pemeriksaan keadaan dan sebagainya sehingga manusia hanya perlu mengendalikan robot di suatu tempat dan dapat melakukan perkerjaan tersebut dengan lebih aman. Robot yang dirancang dalam project ini berbentuk robot berkamera tanpa kabel. Dalam project ini dilengkapi dengan modul Wemos dan driver motor L298N untuk mendukung pergerakan robot dan kamera yang digunakan unutk mengirimkan gambar. Semua komponen tersebut terkoneksi oleh smartphone ber-sistem operasi android yang mempunyai aplikasi buatan sendiri untuk menerima gambar dari kamera dan mengendalikan pergerakan robot. Kata kunci- Driver Motor, IP Kamera , Robot, Wemos
APA, Harvard, Vancouver, ISO, and other styles
50

Awang, Norfarida Binti. "Development of arduino controlled robotic arm." Education and Social Sciences Review 1, no. 2 (2020): 37. http://dx.doi.org/10.29210/07essr55700.

Full text
Abstract:
&lt;p&gt;Robots are playing a vital role in today’s industrial automation and monitoring system. As technology developed, these robots have increased their applications. Working robots that cooperate to the people makes the work less effort and uncomplicated. A robotic arm is a type of mechanical arm, usually programmable, with similar functions to a human arm. In this project, a programmable robotic arm is redesigned and implemented, and aimed to move using remote control and hand gesture from a certain distance by using wireless component. This robotic arm is based on android application control for remote operation. Inputs are sent to control the movement of the robot either to move in x-axis, y-axis or z-axis using 1Sheeld application on android smartphone. Five motors are interfaced to the microcontroller whereas one motor is used for gripper movement, while the other four motors are used at the joints of the robotic arm for movement. The android application device transmitter acts as a remote control by using hand gesture that has an advantage of adequate range, while receiver (1Sheeld) and Bluetooth device are fed to the microcontroller (Arduino) to drive DC motor via motor driver IC L298N for clockwise and anti-clockwise rotation. Remote operation is achieved by any smartphone with android upon Graphical User Interface (GUI) based touch screen operation.&lt;/p&gt;
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography