Dissertations / Theses on the topic 'Labeled graph'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 39 dissertations / theses for your research on the topic 'Labeled graph.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Park, Noseong. "Top-K Query Processing in Edge-Labeled Graph Data." Thesis, University of Maryland, College Park, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10128677.
Full textEdge-labeled graphs have proliferated rapidly over the last decade due to the increased popularity of social networks and the Semantic Web. In social networks, relationships between people are represented by edges and each edge is labeled with a semantic annotation. Hence, a huge single graph can express many different relationships between entities. The Semantic Web represents each single fragment of knowledge as a triple (subject, predicate, object), which is conceptually identical to an edge from subject to object labeled with predicates. A set of triples constitutes an edge-labeled graph on which knowledge inference is performed.
Subgraph matching has been extensively used as a query language for patterns in the context of edge-labeled graphs. For example, in social networks, users can specify a subgraph matching query to find all people that have certain neighborhood relationships. Heavily used fragments of the SPARQL query language for the Semantic Web and graph queries of other graph DBMS can also be viewed as subgraph matching over large graphs.
Though subgraph matching has been extensively studied as a query paradigm in the Semantic Web and in social networks, a user can get a large number of answers in response to a query. These answers can be shown to the user in accordance with an importance ranking. In this thesis proposal, we present four different scoring models along with scalable algorithms to find the top-k answers via a suite of intelligent pruning techniques. The suggested models consist of a practically important subset of the SPARQL query language augmented with some additional useful features.
The first model called Substitution Importance Query (SIQ) identifies the top-k answers whose scores are calculated from matched vertices' properties in each answer in accordance with a user-specified notion of importance. The second model called Vertex Importance Query (VIQ) identifies important vertices in accordance with a user-defined scoring method that builds on top of various subgraphs articulated by the user. Approximate Importance Query (AIQ), our third model, allows partial and inexact matchings and returns top-k of them with a user-specified approximation terms and scoring functions. In the fourth model called Probabilistic Importance Query (PIQ), a query consists of several sub-blocks: one mandatory block that must be mapped and other blocks that can be opportunistically mapped. The probability is calculated from various aspects of answers such as the number of mapped blocks, vertices' properties in each block and so on and the most top-k probable answers are returned.
An important distinguishing feature of our work is that we allow the user a huge amount of freedom in specifying: (i) what pattern and approximation he considers important, (ii) how to score answers - irrespective of whether they are vertices or substitution, and (iii) how to combine and aggregate scores generated by multiple patterns and/or multiple substitutions. Because so much power is given to the user, indexing is more challenging than in situations where additional restrictions are imposed on the queries the user can ask.
The proposed algorithms for the first model can also be used for answering SPARQL queries with ORDER BY and LIMIT, and the method for the second model also works for SPARQL queries with GROUP BY, ORDER BY and LIMIT. We test our algorithms on multiple real-world graph databases, showing that our algorithms are far more efficient than popular triple stores.
Li, Jie. "Data integration for biological network databases MetNetDB labeled graph model and graph matching algorithm /." [Ames, Iowa : Iowa State University], 2008.
Find full textChristensen, Robin. "An Analysis of Notions of Differential Privacy for Edge-Labeled Graphs." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-169379.
Full textShafie, Termeh. "Random Multigraphs : Complexity Measures, Probability Models and Statistical Inference." Doctoral thesis, Stockholms universitet, Statistiska institutionen, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-82697.
Full textTahraoui, Mohammed Amin. "Coloring, packing and embedding of graphs." Phd thesis, Université Claude Bernard - Lyon I, 2012. http://tel.archives-ouvertes.fr/tel-00995041.
Full textMortada, Maidoun. "The b-chromatic number of regular graphs." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10116.
Full textTwo problems are considered in this thesis: the b-coloring problem and the graph packing problem. 1. The b-Coloring Problem : A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least a vertex in each other color class. The b-chromatic number of a graph G, denoted by b(G), is the maximum number t such that G admits a b-coloring with t colors. El Sahili and Kouider asked whether it is true that every d-regular graph G with girth at least 5 satisfies b(G) = d + 1. Blidia, Maffray and Zemir proved that the conjecture is true for d ≤ 6. Also, the question was solved for d-regular graphs with supplementary conditions. We study El Sahili and Kouider conjecture by determining when it is possible and under what supplementary conditions it is true. We prove that b(G) = d+1 if G is a d-regular graph containing neither a cycle of order 4 nor of order 6. Then, we provide specific conditions on the vertices of a d-regular graph G with no cycle of order 4 so that b(G) = d + 1. Cabello and Jakovac proved that if v(G) ≥ 2d3 - d2 + d, then b(G) = d + 1, where G is a d-regular graph. We improve this bound by proving that if v(G) ≥ 2d3 - 2d2 + 2d, then b(G) = d+1 for a d-regular graph G. 2. Graph Packing Problem : Graph packing problem is a classical problem in graph theory and has been extensively studied since the early 70's. Consider a permutation σ : V (G) → V (Kn), the function σ* : E(G) → E(Kn) such that σ *(xy) = σ *(x) σ *(y) is the function induced by σ. We say that there is a packing of k copies of G into the complete graph Kn if there exist k permutations σ i : V (G) → V (Kn), where i = 1,…, k, such that σ*i (E(G)) ∩ σ*j (E(G)) = ɸ for I ≠ j. A packing of k copies of a graph G will be called a k-placement of G. The kth power Gk of a graph G is the supergraph of G formed by adding an edge between all pairs of vertices of G with distance at most k. Kheddouci et al. proved that for any non-star tree T there exists a 2-placement σ on V (T). We introduce a new variant of graph packing problem, called the labeled packing of a graph into its power graph
Adamský, Aleš. "Segmentace mluvčích s využitím statistických metod klasifikace." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-219007.
Full textFan, Shuangfei. "Deep Representation Learning on Labeled Graphs." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/96596.
Full textDoctor of Philosophy
Graphs are one of the most important and powerful data structures for conveying the complex and correlated information among data points. In this research, we aim to provide more robust and accurate models for some graph specific tasks, such as collective classification and graph generation, by designing deep learning models to learn better task-specific representations for graphs. First, we studied the collective classification problem in graphs and proposed recurrent collective classification, a variant of the iterative classification algorithm that is more robust to situations where predictions are noisy or inaccurate. Then we studied the problem of graph generation using deep generative models. We first proposed a deep generative model using the GAN framework that generates labeled graphs. Then in order to support more applications and also get more control over the generated graphs, we extended the problem of graph generation to conditional graph generation which can then be applied to various applications for modeling graph evolution and transformation.
Martinsen, Thor. "Refinement composition using doubly labeled transition graphs." Thesis, Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion-image.exe/07Sep%5FMartinsen.pdf.
Full textThesis Advisor(s): Dinolt, George ; Fredricksen, Harold. "September 2007." Description based on title screen as viewed on October 23, 2007. Includes bibliographical references (p.49-51). Also available in print.
Johansson, Öjvind. "Graph Decomposition Using Node Labels." Doctoral thesis, KTH, Numerical Analysis and Computer Science, NADA, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3213.
Full textHumphries, Peter John. "Combinatorial Aspects of Leaf-Labelled Trees." Thesis, University of Canterbury. Mathematics and Statistics, 2008. http://hdl.handle.net/10092/1801.
Full textWillis, Paulette Nicole. "C*-algebras of labeled graphs and *-commuting endomorphisms." Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/627.
Full textRuan, Da. "Statistical methods for comparing labelled graphs." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/24963.
Full textHuynh, Tony. "The Linkage Problem for Group-labelled Graphs." Thesis, University of Waterloo, University of Waterloo, 2009. http://hdl.handle.net/10012/4716.
Full textHONG, HUI. "Computing Label-Constraint Reachability in Graph Databases." Kent State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=kent1333472725.
Full textGurajada, Sairam [Verfasser], and Gerhard [Akademischer Betreuer] Weikum. "Distributed querying of large labeled graphs / Sairam Gurajada ; Betreuer: Gerhard Weikum." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2017. http://d-nb.info/1125431903/34.
Full textMeng, Jinghan. "Flexible and Feasible Support Measures for Mining Frequent Patterns in Large Labeled Graphs." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6900.
Full textGouveia, da silva Thiago. "The Minimum Labeling Spanning Tree and Related Problems." Thesis, Avignon, 2018. http://www.theses.fr/2018AVIG0278.
Full textThe minimum labeling spanning tree problem (MLSTP) is a combinatorial optimization problem that consists in finding a spanning tree in a simple edge-labeled graph, i.e., a graph inwhich each edge has one label associated, by using a minimum number of labels. It is anNP-hard problem that has attracted substantial research attention in recent years. In its turn,the generalized minimum labeling spanning tree problem (GMLSTP) is a generalization of theMLSTP that allows the situation in which multiple labels can be assigned to an edge. Bothproblems have several practical applications in important areas such as computer network design, multimodal transportation network design, and data compression. This thesis addressesseveral connectivity problems defined over edge-labeled graphs, in special the minimum labeling spanning tree problem and its generalized version. The contributions in this work can beclassified between theoretical and practical. On the theoretical side, we have introduced newuseful concepts, definitions, properties and theorems regarding edge-labeled graphs, as well asa polyhedral study on the GMLSTP. On the practical side, we have proposed new heuristics— such as the metaheuristic-based algorithm MSLB, and the constructive heuristic pMVCA —and exact methods — such as new mathematical formulations and branch-and-cut algorithms —for solving the GMLSTP. Computational experiments over well established benchmarks for theMLSTP are reported, showing that the new approaches introduced in this work have achievedthe best results for both heuristic and exact methods in comparison with the state-of-the-artmethods in the literature
O Problema da Árvore Geradora com Rotulação Mínima (MLSTP, do inglês minimum labelingspanning tree problem) é um problema de otimização combinatória que consiste em encontraruma árvore de cobertura em um grafo com arestas rotuladas, isto é, um grafo no qual cada arestapossui um rótulo associado, utilizando o menor número de rótulos. Este problema é NP-difícile tem atraído bastante atenção em pesquisas nos últimos anos. Por sua vez, o Problema Generalizado da Árvore Geradora com Rotulação Mínima (GMLSTP, do inglês generalized minimum labeling spanning tree problem) é uma generalização do MLSTP na qual se permite que múltiplos rótulos sejam associados a uma aresta. Ambos os problemas tem aplicações práticas em áreas importantes, como Projeto de Redes de Computadores, Projeto de Redes de Transporte Multimodais e Compactação de Dados. Esta tese aborda vários problemas de conectividade definidos em grafos com arestas rotuladas, em especial o Problema da Árvore Geradora com Rotulação Mínima e sua versão generalizada. As contribuições neste trabalho podem ser classificadas entre teóricas e práticas. Dentre as contribuições teóricas, introduzimos novos conceitos,definições, propriedades e teoremas úteis em relação a grafos com arestas rotuladas, bem como um estudo poliédrico sobre o GMLSTP. Dentre as contribuições práticas, propusemos novas heurísticas _ como o algoritmo baseado na metaheurística MSLB e a heurística construtiva pMVCA _ e métodos exatos _ como novas formulações matemáticas e algoritmos branch- and-cut _ para resolver o GMLSTP. Os experimentos computacionais realizados utilizando conjuntos de instâncias bem estabelecidos para o MLSTP são relatados, mostrando que as novas abordagens introduzidas neste trabalho alcançaram os melhores resultados para métodosheurísticos e exatos em comparação com estado da arte da literatura
Chatel, David. "Semi-supervised clustering in graphs." Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10134/document.
Full textClustering is the task of finding a partition of items, such that items in the same cluster are more similar than items in different clusters. One challenge consists in designing a system capable of taking benefit of the different sources of data. Among the different forms a piece of data can take, the description of an object can take the form of a feature vector: a list of attributes that takes a value. Objects can also be described by a graph which captures the relationships objects have with each others. In addition to this, some constraints can be known about the data. It can be known that an object is of a certain type or that two objects share the same type or are of different types. It can also be known that on a global scale, the different types of objects appear with a known frequency. In this thesis, we focus on clustering with three different types of constraints: label constraints, pairwise constraints and power-law constraint. A label constraint specifies in which cluster an object belong. Pairwise constraints specify that pairs of object should or should not share the same cluster. Finally, the power-law constraint is a cluster-level constraint that specifies that the distribution of cluster sizes are subject to a power-law. We want to show that introducing semi-supervision to clustering algorithms can alter and improve the solutions returned by unsupervised clustering algorithms. We contribute to this question by proposing algorithms for each type of constraints. Our experiments on UCI data sets and natural language processing data sets show the good performance of our algorithms and give hints towards promising future works
Okoth, Isaac Owino. "Combinatorics of oriented trees and tree-like structures." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96860.
Full textENGLISH ABSTRACT : In this thesis, a number of combinatorial objects are enumerated. Du and Yin as well as Shin and Zeng (by a different approach) proved an elegant formula for the number of labelled trees with respect to a given in degree sequence, where each edge is oriented from a vertex of lower label towards a vertex of higher label. We refine their result to also take the number of sources (vertices of in degree 0) or sinks (vertices of out degree 0) into account. We find formulas for the mean and variance of the number of sinks or sources in these trees. We also obtain a differential equation and a functional equation satisfied by the generating function for these trees. Analogous results for labelled trees with two marked vertices, related to functional digraphs, are also established. We extend the work to count reachable vertices, sinks and leaf sinks in these trees. Among other results, we obtain a counting formula for the number of labelled trees on n vertices in which exactly k vertices are reachable from a given vertex v and also the average number of vertices that are reachable from a specified vertex in labelled trees of order n. In this dissertation, we also enumerate certain families of set partitions and related tree-like structures. We provide a proof for a formula that counts connected cycle-free families of k set partitions of {1, . . . , n} satisfying a certain coherence condition and then establish a bijection between these families and the set of labelled free k-ary cacti with a given vertex-degree distribution. We then show that the formula also counts coloured Husimi graphs in which there are no blocks of the same colour that are incident to one another. We extend the work to count coloured oriented cacti and coloured cacti. Noncrossing trees and related tree-like structures are also considered in this thesis. Specifically, we establish formulas for locally oriented noncrossing trees with a given number of sources and sinks, and also with given indegree and outdegree sequences. The work is extended to obtain the average number of reachable vertices in these trees. We then generalise the concept of noncrossing trees to find formulas for the number of noncrossing Husimi graphs, cacti and oriented cacti. The study is further extended to find formulas for the number of bicoloured noncrossing Husimi graphs and the number of noncrossing connected cycle-free pairs of set partitions.
AFRIKAANSE OPSOMMING : In hierdie tesis word ’n aantal kombinatoriese objekte geenumereer. Du en Yin asook Shin en Zeng (deur middel van ’n ander benadering) het ’n elegante formule vir die aantal geëtiketteerde bome met betrekking tot ’n gegewe ingangsgraadry, waar elke lyn van die nodus met die kleiner etiket na die nodus met die groter etiket toe georiënteer word. Ons verfyn hul resultaat deur ook die aantal bronne (nodusse met ingangsgraad 0) en putte (nodusse met uitgangsgraad 0) in ag te neem. Ons vind formules vir die gemiddelde en variansie van die aantal putte of bronne in hierdie bome. Ons bepaal verder ’n differensiaalvergelyking en ’n funksionaalvergelyking wat deur die voortbringende funksie van hierdie bome bevredig word. Analoë resultate vir geëtiketteerde bome met twee gemerkte nodusse (wat verwant is aan funksionele digrafieke), is ook gevind. Ons gaan verder voort deur ook bereikbare nodusse, bronne en putte in hierdie bome at te tel. Onder andere verkry ons ’n formule vir die aantal geëtiketteerde bome met n nodusse waarin presies k nodusse vanaf ’n gegewe nodus v bereikbaar is asook die gemiddelde aantal nodusse wat bereikbaar is vanaf ’n gegewe nodus. Ons enumereer in hierdie tesis verder sekere families van versamelingsverdelings en soortgelyke boom-vormige strukture. Ons gee ’n bewys vir ’n formule wat die aantal van samehangende siklus-vrye families van k versamelingsverdelings op {1, . . . , n} wat ’n sekere koherensie-vereiste bevredig, en ons beskryf ’n bijeksie tussen hierdie familie en die versameling van geëtiketteerde vrye k-êre kaktusse met ’n gegewe nodus-graad-verdeling. Ons toon ook dat hierdie formule ook gekleurde Husimi-grafieke tel waar blokke van dieselfde kleur nie insident met mekaar mag wees nie. Ons tel verder ook gekleurde georiënteerde kaktusse en gekleurde kaktusse. Nie-kruisende bome en soortgelyke boom-vormige strukture word in hierdie tesis ook beskou. On bepaal spesifiek formules vir lokaal georiënteerde nie-kruisende bome wat ’n gegewe aantal bronne en putte het asook nie-kruisende bome met gegewe ingangs- en uitgangsgraadrye. Ons gaan voort deur die gemiddelde aantal bereikbare nodusse in hierdie bome te bepaal. Ons veralgemeen dan die konsep van nie-kruisende bome en vind formules vir die aantal nie-kruisende Husimi-grafieke, kaktusse en georiënteerde kaktusse. Laastens vind ons ’n formule vir die aantaal tweegekleurde nie-kruisende Husimi-grafieke en die aantal nie-kruisende samehangende siklus-vrye pare van versamelingsverdelings.
Jönsson, Mattias, and Lucas Borg. "How to explain graph-based semi-supervised learning for non-mathematicians?" Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20339.
Full textThe large amount of available data on the web can be used to improve the predictions made by machine learning algorithms. The problem is that such data is often in a raw format and needs to be manually labeled by a human before it can be used by a machine learning algorithm. Semi-supervised learning (SSL) is a technique where the algorithm uses a few prepared samples to automatically prepare the rest of the data. One approach to SSL is to represent the data in a graph, also called graph-based semi-supervised learning (GSSL), and find similarities between the nodes for automatic labeling.Our goal in this thesis is to simplify the advanced processes and steps to implement a GSSL-algorithm. We will cover basic tasks such as setup of the developing environment and more advanced steps such as data preprocessing and feature extraction. The feature extraction techniques covered are bag-of-words (BOW) and term frequency-inverse document frequency (TF-IDF). Lastly, we present how to classify documents using Label Propagation (LP) and Multinomial Naive Bayes (MNB) with a detailed explanation of the inner workings of GSSL. We showcased the classification performance by classifying documents from the 20 Newsgroup dataset using LP and MNB. The results are documented using two different evaluation scores called F1-score and accuracy. A comparison between MNB and the LP-algorithm using two different types of kernels, KNN and RBF, was made on different amount of labeled documents. The results from the classification algorithms shows that MNB is better at classifying the data than LP.
Planche, Léo. "Décomposition de graphes en plus courts chemins et en cycles de faible excentricité." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCB224.
Full textIn collaboration with reserchears in biology at Université Pierre et Marie Curie, we study graphs coming from biological data in order to improve our understanding of it. Those graphs come from DNA fragments, named reads. Each read is a vertex and two vertices are linked if the DNA sequences are similar enough. Such graphs have a particuliar structure that we name hub-laminar. A graph is said to be hub-laminar if it may be represented as a (small) set of shortest paths such that every vertex of the graph is close to one of those paths. We first study the case where the graph is composed of an unique shortest path of low eccentricity. This problem was first definied by Dragan 2017. We improve the proof of an approximation algorithm already existing and propose a new one, a 3-approximation running in linear time. Furthermore we show its link with the k-laminar problem defined by Habib 2016, consisting in finding a diameter of low eccentricity. We then define and study the problem of the isometric cycle of minimal eccentricity. We show that this problem is NP-complete and propose two approximation algorithms. We then properly define what is an hub-laminar decomposition and we show an approximation algorithm running in O(nm). We test this algorithm with randomly generated graphs and apply it to our biolgical data. Finaly we show that computing an isometric cycle of low eccentricity allows to embed a graph into a cycle with a low multiplicative distortion. Computing an hub-laminar decomposition allows a compact representation of distances with a low additive distortion
Dash, Santanu Kumar. "Adaptive constraint solving for information flow analysis." Thesis, University of Hertfordshire, 2015. http://hdl.handle.net/2299/16354.
Full textAlise, Dario Fioravante. "Algoritmo di "Label Propagation" per il clustering di documenti testuali." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14388/.
Full textAttal, Jean-Philippe. "Nouveaux algorithmes pour la détection de communautés disjointes et chevauchantes basés sur la propagation de labels et adaptés aux grands graphes." Thesis, Cergy-Pontoise, 2017. http://www.theses.fr/2017CERG0842/document.
Full textGraphs are mathematical structures amounting to a set of nodes (objects or persons) in which some pairs are in linked with edges. Graphs can be used to model complex systems.One of the main problems in graph theory is the community detection problemwhich aims to find a partition of nodes in the graph to understand its structure.For instance, by representing insurance contracts by nodes and their relationship by edges,detecting groups of nodes highly connected leads to detect similar profiles and to evaluate risk profiles. Several algorithms are used as aresponse to this currently open research field.One of the fastest method is the label propagation.It's a local method, in which each node changes its own label according toits neighbourhood.Unfortunately, this method has two major drawbacks. The first is the instability of the method. Each trialgives rarely the same result.The second is a bad propagation which can lead to huge communities without sense (giant communities problem).The first contribution of the thesis is i) proposing a stabilisation methodfor the label propagation with artificial dams on edges of some networks in order to limit bad label propagations. Complex networks are also characterized by some nodes which may belong to several communities,we call this a cover.For example, in Protein–protein interaction networks, some proteins may have several functions.Detecting these functions according to their communities could help to cure cancers. The second contribution of this thesis deals with the ii)implementation of an algorithmwith functions to detect potential overlapping nodes .The size of the graphs is also to be considered because some networks contain several millions of nodes and edges like the Amazon product co-purchasing network.We propose iii) a parallel and a distributed version of the community detection using core label propagation.A study and a comparative analysis of the proposed algorithms will be done based on the quality of the resulted partitions and covers
Huang, Sangxia. "Hardness of Constraint Satisfaction and Hypergraph Coloring : Constructions of Probabilistically Checkable Proofs with Perfect Completeness." Doctoral thesis, KTH, Teoretisk datalogi, TCS, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-168576.
Full textEtt probabilistiskt verifierbart bevis (eng: Probabilistically Checkable Proof, PCP) av en matematisk sats är ett bevis skrivet på ett speciellt sätt vilket möjliggör en effektiv probabilistisk verifiering. Den berömda PCP-satsen säger att för varje familj av påståenden i NP finns det en probabilistisk verifierare som kontrollerar om en PCP bevis är giltigt genom att läsa endast 3 bitar från det. Denna banbrytande sats, och arbetena som ledde fram till det, lade grunden för många senare arbeten inom komplexitetsteorin, framförallt inom studiet av approximerbarhet av kombinatoriska optimeringsproblem. I denna avhandling fokuserar vi på en bred klass av optimeringsproblem i form av villkorsuppfyllningsproblem (engelska ``Constraint Satisfaction Problems'' CSPs). En instans av ett CSP av aritet k ges av en mängd variabler som tar värden från någon ändlig domän, och ett antal villkor som vart och ett beror på en delmängd av högst k variabler. Målet är att hitta ett tilldelning av variablerna som samtidigt uppfyller så många som möjligt av villkoren. En alternativ formulering av målet som ofta används är Gap-CSP, där målet är att avgöra om en CSP-instans är satisfierbar eller långt ifrån satisfierbar, där den exakta innebörden av att vara ``långt ifrån satisfierbar'' varierar beroende på problemet.Först studerar vi booleska CSPer, där domänen är {0,1}. Den fråga vi studerar är svårigheten av att särskilja satisfierbara boolesk CSP-instanser från instanser där den bästa tilldelningen satisfierar högst en andel epsilon av villkoren. Intuitivt, när ariten ökar blir CSP mer komplexa och därmed bör svårighetsparametern epsilon avta med ökande aritet. Detta visar sig vara sant och ett första resultat är att för booleska CSP av aritet k är det NP-svårt att särskilja satisfierbara instanser från dem som är högst 2^{~O(k^{1/3})}/2^k-satisfierbara. Vidare studerar vi färgläggning av grafer och hypergrafer. Givet en graf eller en hypergraf, är en färgläggning en tilldelning av färger till noderna, så att ingen kant eller hyperkant är monokromatisk. Problemet vi analyserar är att särskilja instanser som är färgbara med ett litet antal färger från dem som behöver många färger. För grafer visar vi att det finns en konstant K_0>0, så att för alla K >= K_0 är det NP-svårt att särskilja grafer som är K-färgbara från dem som kräver minst 2^{Omega(K^{1/3})} färger. För hypergrafer visar vi att det är kvasi-NP-svårt att särskilja 2-färgbara 8-likformiga hypergrafer som har N noder från dem som kräv minst 2^{(log N)^{1/4-o(1)}} färger. Samtliga dessa resultat bygger på konstruktioner av PCPer med perfekt fullständighet. Det vill säga PCPer där verifieraren alltid accepterar ett korrekt bevis. Inte bara är detta en mycket naturlig egenskap för PCPer, men det kan också vara ett nödvändigt krav för vissa tillämpningar. Konstruktionen av PCPer med perfekt fullständighet för NP-påståenden ger tekniska komplikationer och kräver delvis utvecklande av nya metoder. Vårt booleska CSPer resultat och vårt Färgläggning resultat bevisas genom att anpassa ``Direktsumman-metoden'' introducerad av Siu On Chan till fallet med perfekt fullständighet. Vårt bevis för hypergraffärgningssvårighet förbättrar och förenklar ett färskt resultat av Khot och Saket, där de föreslog begreppet superpositionskomplexitet av CSP.
QC 20150916
Jia, Wei. "Image analysis and representation for textile design classification." Thesis, University of Dundee, 2011. https://discovery.dundee.ac.uk/en/studentTheses/c667f279-d7a6-4670-b23e-c9dbe2784266.
Full textChu, Sheng-Chih, and 朱聖池. "Efficiently Finding Neighborhood Patterns in a Large Labeled Graph." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/10254639751782455142.
Full text國立臺灣師範大學
資訊工程學系
103
Graph is a powerful abstraction of structural data, which is applied to model the various relations among data in a real world. Recently, a new kind of patterns called frequent neighborhood patterns is defined for a large labeled graph. Frequent neighborhood patterns have the downward closure property of the support measure and provide meaningful interpretations of pattern mining. The previous work used an Apriori-like approach to combine the discovered frequent neighborhood patterns into larger candidate patterns, many of the generated candidates may not appear in the graph. In this thesis, we propose an algorithm, which is called the gSFNP algorithm, to find frequent neighborhood patterns efficiently. By applying a pattern growth approach, a data structure of pattern is designed to store the information of the matched sub-graphs for speeding up the following pattern growth computation. Besides, the minimum DFS code of a pattern is used to avoid finding graph isomorphic patterns. Moreover, we propose another MapReduce version of the gSFNP algorithm, which is called the gSFNP_MR algorithm, to solve the problem of insufficient memory in a centralized environment. Finally, we evaluate the performance of gSFNP and gSFNP_MR. The experimental results show that both the proposed algorithms have shorter response time than the previous work.
Huang, Jiayuan. "Learning from Partially Labeled Data: Unsupervised and Semi-supervised Learning on Graphs and Learning with Distribution Shifting." Thesis, 2007. http://hdl.handle.net/10012/3165.
Full textPootheri, Sridar Kuttan. "Counting classes of labeled 2-connected graphs." 2000. http://purl.galileo.usg.edu/uga%5Fetd/pootheri%5Fsridar%5Fk%5F200005%5Fms.
Full textMorgan, David. "Gracefully labelled trees from Skolem and related sequences /." 2001.
Find full textAraújo, Miguel Ramos de. "Communities and Anomaly Detection in Large Edged-Labeled Graphs." Tese, 2017. https://hdl.handle.net/10216/105062.
Full textAraújo, Miguel Ramos de. "Communities and Anomaly Detection in Large Edged-Labeled Graphs." Doctoral thesis, 2017. https://hdl.handle.net/10216/105062.
Full text"Graph-based recommendation with label propagation." 2011. http://library.cuhk.edu.hk/record=b5894820.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2011.
Includes bibliographical references (p. 97-110).
Abstracts in English and Chinese.
Abstract --- p.ii
Acknowledgement --- p.vi
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Overview --- p.1
Chapter 1.2 --- Motivations --- p.6
Chapter 1.3 --- Contributions --- p.9
Chapter 1.4 --- Organizations of This Thesis --- p.11
Chapter 2 --- Background --- p.14
Chapter 2.1 --- Label Propagation Learning Framework --- p.14
Chapter 2.1.1 --- Graph-based Semi-supervised Learning --- p.14
Chapter 2.1.2 --- Green's Function Learning Framework --- p.16
Chapter 2.2 --- Recommendation Methods --- p.19
Chapter 2.2.1 --- Traditional Memory-based Methods --- p.19
Chapter 2.2.2 --- Traditional Model-based Methods --- p.20
Chapter 2.2.3 --- Label Propagation Recommendation Models --- p.22
Chapter 2.2.4 --- Latent Feature Recommendation Models . --- p.24
Chapter 2.2.5 --- Social Recommendation Models --- p.25
Chapter 2.2.6 --- Tag-based Recommendation Models --- p.25
Chapter 3 --- Recommendation with Latent Features --- p.28
Chapter 3.1 --- Motivation and Contributions --- p.28
Chapter 3.2 --- Item Graph --- p.30
Chapter 3.2.1 --- Item Graph Definition --- p.30
Chapter 3.2.2 --- Item Graph Construction --- p.31
Chapter 3.3 --- Label Propagation Recommendation Model with Latent Features --- p.33
Chapter 3.3.1 --- Latent Feature Analysis --- p.33
Chapter 3.3.2 --- Probabilistic Matrix Factorization --- p.35
Chapter 3.3.3 --- Similarity Consistency Between Global and Local Views (SCGL) --- p.39
Chapter 3.3.4 --- Item-based Green's Function Recommendation Based on SCGL --- p.41
Chapter 3.4 --- Experiments --- p.41
Chapter 3.4.1 --- Dataset --- p.43
Chapter 3.4.2 --- Baseline Methods --- p.43
Chapter 3.4.3 --- Metrics --- p.45
Chapter 3.4.4 --- Experimental Procedure --- p.45
Chapter 3.4.5 --- Impact of Weight Parameter u --- p.46
Chapter 3.4.6 --- Performance Comparison --- p.48
Chapter 3.5 --- Summary --- p.50
Chapter 4 --- Recommendation with Social Network --- p.51
Chapter 4.1 --- Limitation and Contributions --- p.51
Chapter 4.2 --- A Social Recommendation Framework --- p.55
Chapter 4.2.1 --- Social Network --- p.55
Chapter 4.2.2 --- User Graph --- p.57
Chapter 4.2.3 --- Social-User Graph --- p.59
Chapter 4.3 --- Experimental Analysis --- p.60
Chapter 4.3.1 --- Dataset --- p.61
Chapter 4.3.2 --- Metrics --- p.63
Chapter 4.3.3 --- Experiment Setting --- p.64
Chapter 4.3.4 --- Impact of Control Parameter u --- p.65
Chapter 4.3.5 --- Performance Comparison --- p.67
Chapter 4.4 --- Summary --- p.69
Chapter 5 --- Recommendation with Tags --- p.71
Chapter 5.1 --- Limitation and Contributions --- p.71
Chapter 5.2 --- Tag-Based User Modeling --- p.75
Chapter 5.2.1 --- Tag Preference --- p.75
Chapter 5.2.2 --- Tag Relevance --- p.78
Chapter 5.2.3 --- User Interest Similarity --- p.80
Chapter 5.3 --- Tag-Based Label Propagation Recommendation --- p.83
Chapter 5.4 --- Experimental Analysis --- p.84
Chapter 5.4.1 --- Douban Dataset --- p.85
Chapter 5.4.2 --- Experiment Setting --- p.86
Chapter 5.4.3 --- Metrics --- p.87
Chapter 5.4.4 --- Impact of Tag and Rating --- p.88
Chapter 5.4.5 --- Performance Comparison --- p.90
Chapter 5.5 --- Summary --- p.92
Chapter 6 --- Conclusions and Future Work --- p.94
Chapter 6.0.1 --- Conclusions --- p.94
Chapter 6.0.2 --- Future Work --- p.96
Bibliography --- p.97
Wang, Chung Han, and 王宗涵. "Unsupervised Image Segmentation using Multi-label Graph Cuts." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/92616521540163396109.
Full text國立清華大學
資訊工程學系
104
Image segmentation is an important issue in image editing and computer vision. Due to the complexity of information in images, efficient extraction of a foreground object is a challenging problem. Recently, several approaches based on optimization by graph cuts have been developed which successfully combine the color feature with the edge information. A problem is that the segmentation results heavily depend on the seeds selection. However, it is difficult to obtaining reliable seeds automatically. To overcome this problem, we propose an automatic scheme for image segmentation. Compare to the classical binary-label graph cuts, the results by the multi-label graph cuts do not heavily depend on the seeds selection. Our method uses the multi-label graph cuts to separate an image into multiple segments, and then classify the segments into the object and the background. We introduce the standard deviation to adapt the importance between the properties in our method. Experiments show that the proposed method yields more accurate segmentation results than the previous automatic approach and is comparable to the interactive approach.
Dickinson, Peter. "Graph based techniques for measurement of intranet dynamics." 2006. http://arrow.unisa.edu.au:8081/1959.8/45980.
Full textHumphries, Peter J. "Combinatorial aspects of leaf-labelled trees : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics, University of Canterbury Department of Mathematics and Statistics /." 2008. http://hdl.handle.net/10092/1801.
Full textTedder, Marc. "Applications of Lexicographic Breadth-first Search to Modular Decomposition, Split Decomposition, and Circle Graphs." Thesis, 2011. http://hdl.handle.net/1807/29888.
Full textShenkenfelder, Warren. "Learning bisimulation." Thesis, 2008. http://hdl.handle.net/1828/1262.
Full text