Academic literature on the topic 'LabWare'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'LabWare.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "LabWare"

1

Gershon, Diane. "New lines in labware." Nature 342, no. 6249 (November 1989): 576–78. http://dx.doi.org/10.1038/342576a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gershon, Diane. "New lines in labware." Nature 371, no. 6497 (October 1994): 539–42. http://dx.doi.org/10.1038/371539a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Anido, Luis, Mart�n Llamas, and Manuel J. Fern�ndez. "Labware for the Internet." Computer Applications in Engineering Education 8, no. 3-4 (2000): 201–8. http://dx.doi.org/10.1002/1099-0542(2000)8:3/4<201::aid-cae11>3.0.co;2-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ishikawa, Toshio, Koji Takano, Toshiro Fujita, Tetsuya Igarashi, Masakazu Miura, and Keishi Hata. "Estrogenic impurities in labware." Nature Biotechnology 19, no. 9 (September 2001): 812. http://dx.doi.org/10.1038/nbt0901-812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bhattacharya, Prabir, Li Yang, Minzhe Guo, Kai Qian, and Ming Yang. "Learning Mobile Security with Labware." IEEE Security & Privacy 12, no. 1 (January 2014): 69–72. http://dx.doi.org/10.1109/msp.2014.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hughes, Stephen. "Labware, Lab Supplies, and Microplates." Journal of Laboratory Automation 17, no. 4 (August 2012): 245–47. http://dx.doi.org/10.1177/2211068212450994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hughes, Stephen R. "Labware, Lab Supplies, and Microplates." Journal of Laboratory Automation 18, no. 4 (August 2013): 261–63. http://dx.doi.org/10.1177/2211068213491047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hughes, Stephen. "Labware, Lab Supplies, and Microplates." Journal of Laboratory Automation 19, no. 4 (August 2014): 432–34. http://dx.doi.org/10.1177/2211068214537590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Urban, Pawel. "Self-built labware stimulates creativity." Nature 532, no. 7599 (April 20, 2016): 313. http://dx.doi.org/10.1038/532313d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Watson, John, Emily B. Greenough, John E. Leet, Michael J. Ford, Dieter M. Drexler, James V. Belcastro, John J. Herbst, Moneesh Chatterjee, and Martyn Banks. "Extraction, Identification, and Functional Characterization of a Bioactive Substance From Automated Compound-Handling Plastic Tips." Journal of Biomolecular Screening 14, no. 5 (May 21, 2009): 566–72. http://dx.doi.org/10.1177/1087057109336594.

Full text
Abstract:
Disposable plastic labware is ubiquitous in contemporary pharmaceutical research laboratories. Plastic labware is routinely used for chemical compound storage and during automated liquid-handling processes that support assay development, high-throughput screening, structure-activity determinations, and liability profiling. However, there is little information available in the literature on the contaminants released from plastic labware upon DMSO exposure and their resultant effects on specific biological assays . The authors report here the extraction, by simple DMSO washing, of a biologically active substance from one particular size of disposable plastic tips used in automated compound handling. The active contaminant was identified as erucamide ((Z)-docos-13-enamide), a long-chain mono-unsaturated fatty acid amide commonly used in plastics manufacturing, by gas chromatography/mass spectroscopy analysis of the DMSO-extracted material. Tip extracts prepared in DMSO, as well as a commercially obtained sample of erucamide, were active in a functional bioassay of a known G-protein-coupled fatty acid receptor. A sample of a different disposable tip product from the same vendor did not release detectable erucamide following solvent extraction, and DMSO extracts prepared from this product were inactive in the receptor functional assay. These results demonstrate that solvent-extractable contaminants from some plastic labware used in the contemporary pharmaceutical research and development (R&D) environment can be introduced into physical and biological assays during routine compound management liquid-handling processes. These contaminants may further possess biological activity and are therefore a potential source of assay-specific confounding artifacts.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "LabWare"

1

Esteban, Altabella Joan. "Herramienta de cálculo para la construcción, explotación y clausura de depósitos controlados con valorización de residuos inertes: LABWASTE.2020." Doctoral thesis, Universitat Jaume I, 2018. http://hdl.handle.net/10803/587109.

Full text
Abstract:
La cantidad de residuos de construcción y demolición (RCD) generados en la Unión Europea (UE) supera los 860 millones de toneladas anuales y representa un tercio del total de residuos generados. Este estudio plantea el uso de áridos reciclados en las fases de construcción, explotación y clausura de los depósitos controlados de residuos sólidos. Para ello se ha desarrollado LABWASTE.2020, una herramienta de cálculo que estima las cantidades de áridos necesarios en las diferentes zonas de un depósito controlado. Los resultados obtenidos permiten en primer lugar, estimar la demanda de áridos y determinar las cantidades que podrían ser reemplazadas por áridos reciclados y en segundo lugar, obtener un análisis comparativo de los costes de compra y transporte de áridos considerando varios proveedores. De este modo, se puede elegir la opción más sostenible económica y ambientalmente, de manera que es posible reducir tanto el impacto ambiental como el coste económico.
The quantity of construction and demolition wastes (CDW) generated in the European Union (EU) exceeds 860 million tons per year. This study proposes the use of recycled aggregates in the construction, management and closure of landfills. For this purpose, LABWASTE.2020 has been developed. It estimates, by means of mathematical relationships, the quantity of aggregates required in the different areas of a landfill. The obtained results allow, on the one hand, estimate the demand for aggregates and determine the quantities which could be replaced by recycled aggregates. On the other hand, obtain a comparative analysis of the purchase and transport costs considering several suppliers of aggregates. So, the most economically and environmentally sustainable option could be chosen, therefore both the environmental impact and the economic cost could be reduced.
La quantitat de residus de construcció i demolició (RCD) generats a la Unió Europea (UE) supera els 860 milions de tones anuals i representa un terç del total de residus generats. Aquest estudi es planteja l'ús d’aquest tipus d’àrids a les fases de construcció, explotació i clausura dels dipòsits controlats de residus sòlids. Per tal d’aconseguir-ho s'ha creat LABWASTE.2020, una ferramenta de càlcul que estima les quantitats d’àrids necessaris als diferents sectors d’un dipòsit controlat. Els resultats obtinguts permeten, per una banda, estimar la demanda d'àrids i determinar les quantitats que podrien ser reemplaçades per àrids reciclats; i per l’altra, obtindre una anàlisi comparatiu dels costos de compra i transport considerant diversos proveïdors. Així doncs, es pot triar l’opció més sostenible econòmicament i ambiental de manera que és possible reduir tant l’impacte ambiental com el cost econòmic.
APA, Harvard, Vancouver, ISO, and other styles
2

Mezey, Eva. "The Nature and Role of Experiment in Science Education." Thesis, Malmö högskola, Lärarutbildningen (LUT), 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-33990.

Full text
Abstract:
Experimentets art och roll i naturvetenskaplig undervisning är ett fundamentalt och omfattande ämne. I föreliggande litteraturstudie görs ett försök att sätta in frågan i ett historiskt, pedagogiskt och vetenskapligt sammanhang. Innan experimentets roll diskuteras, ställs dock frågan vad naturvetenskap är, varför och hur det skall undervisas, och vad som kännetecknar praktiskt arbete och experimentell verksamhet i skolan. Med denna bakgrund refereras några forskares och lärares erfarenheter och åsikter. Det visar sig, föga överraskande, att formerna för och avsikterna med experiment i undervisningen är skiftande. Studien får därför ses som ett försök till kartläggning av frågeställningen, med avsikten att lyfta fram några representativa exempel. Slutsatsen måste bli, att titelns fråga har många möjliga svar. Den gemensamma nämnaren förefaller vara, att praktiskt arbete och experiment är önskvärda inslag i naturvetenskaplig undervisning, trots oenighet och osäkerhet beträffande deras mål och effektivitet.
The nature and role of experiment in science education is a fundamental and extensive subject. In the present literature survey, the subject is considered in a historical, pedagogical and scientific context. However, previous to discussing the role of experiment, we ask what science is, why and how we should teach it, and what characterizes practical and experimental work in school. Bearing this in mind, the experiences and opinions of some researchers and teachers are accounted for. We realize, not very surprisingly, that the methods and intentions for using experiment in science teaching are diverse. This work is consequently an attempt to map the subject and to bring forward some representative examples. The conclusion must be, that the question we have posed in the title has many possible answers. These appear to have in common, that practical and experimental work are considered desirable in science teaching, in spite of disagreement and doubt concerning their goal and efficiency.
APA, Harvard, Vancouver, ISO, and other styles
3

Bernhard, Jonte, Anna-Karin Carstensen, and (née Gonzalez-Sampayo) Margarita Holmberg. "Investigating engineering students‘ learning – learning as the learning of a complex concept." Linköpings universitet, Fysik och elektroteknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-65601.

Full text
Abstract:
In both engineering and physics education, a common objective is that students should learn to use theories and models in order to understand the relation between theories and models, and objects and events, and to develop holistic, conceptual knowledge. During lab-work, students are expected to use, or learn to use, symbolic and physical tools (such as concepts, theories, models, representations, inscriptions, mathematics, instruments and devices) in order both to understand the phenomena being studied, and to develop the skills and abilities to use the tools themselves. We have earlier argued that this learning should be seen as the learning of a complex concept, i.e. a “concept” that makes up a holistic system of “single” interrelated “concepts” (i.e. a whole made up of interrelated parts). On the contrary, however, in education research it is common to investigate “misconceptions” of “single concepts”. In this paper we will show the power of analysing engineering students’ learning as the learning of a complex concept. In this model “single concepts” are illustrated as nodes or “islands” that may be connected by links, while the links that students actually make are represented by arrows. The nodes in our model are found by looking for “gaps” in the actions and conversations of students. A gap corre­sponds to a non-established link, and when a gap is filled and the students establish a relation between two nodes, this is represented by a link. The more links that are made, the more complete the knowledge. In this study we report an analysis of a sequence of labs about AC-electricity in an electric circuit theory course. In for example electric circuit theory the “concepts” of current, voltage and impedance are interdependent. Rather, the central physical phenomenon is “electricity” represented by Ohms law as a generalization of the current/voltage/impedance/frequency-relationship of a circuit or circuit element. The results show the learning of “electricity” as a complex concept with students’ knowledge becoming more complete. Furthermore, according to our analysis “entities” that in later labs were fused into one were separate in the earlier labs. For example in a later lab we could note that “the physical circuit” and “the circuit drawing” had fused into a single “real circuit”. Our results suggest that the learning of a complex concept first start with establishing more and more links. As links become well established, “entities” that have been separate fuse into a whole. Our model suggests a method for finding “learning difficulties” since these corresponds to “gaps” and non-established links. As teachers and experts in a field we can miss to uncover these since for us the ‘complex concept’ has become a conceptual whole and we may no longer be able to distinguish the parts in the complex. In line with the thesis of M. Holmberg we also argue that learning problems in electric circuit theory may be due to the common failure to appreciate that concepts are relations.
APA, Harvard, Vancouver, ISO, and other styles
4

Carstensen, Anna-Karin. "Connect : Modelling Learning to Facilitate Linking Models and the Real World trough Lab-Work in Electric Circuit Courses for Engineering Students." Doctoral thesis, Linköpings universitet, Fysik och elektroteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-97395.

Full text
Abstract:
A recurring question in science and engineering education is why the students do not link knowledge from theoretical classes to the real world met in laboratory courses. Mathematical models and visualisations are widely used in engineering and engineering education. Very often it is assumed that the students are familiar with the mathematical concepts used. These may be concepts taught in high school or at university level. One problem, though, is that many students have never or seldom applied their mathematical skills in other subjects, and it may be difficult for them to use their skills in a new context. Some concepts also seem to be "too difficult" to understand. One of these mathematical tools is to use Laplace Transforms to solve differential equations, and to use the derived functions to visualise transient responses in electric circuits, or control engineering. In many engineering programs at college level the application of the Laplace Transform is considered too difficult for the students to understand, but is it really, or does it depend on the teaching methods used? When applying mathematical concepts during lab work, and not teaching the mathematics and practical work in different sessions, and also using examples varied in a very systematic way, our research shows that the students approach the problem in a very different way. It shows that by developing tasks consequently according to the Theory of Variation, it is not impossible to apply the Laplace Transform already in the first year of an engineering program. The original aim of this thesis was to show: how students work with lab-tasks, especially concerning the goal to link theory to the real world how it is possible to change the ways students approach the task and thus their learning, by systematic changes in the lab-instructions During the spring 2002 students were video-recorded while working with labs in Electric Circuits. Their activity was analysed. Special focus was on what questions the students raised, and in what ways these questions were answered, and in what ways the answers were used in the further activities. This work informed the model ”learning of a complex concept”, which was used as well to analyse what students do during lab-work, and what teachers intend their students to learn. The model made it possible to see what changes in the lab-instructions that would facilitate students learning of the whole, to link theoretical models to the real world, through the labactivities. The aim of the thesis has thus become to develop a model: The learning of a complex concept show how this model can be used as well for analysis of the intended object of learning as students activities during lab-work, and thus the lived object of learning use the model in analysis of what changes in instruction that are critical for student learning. The model was used to change the instructions. The teacher interventions were included into the instructions in a systematic way, according to as well what questions that were raised by the students, as what questions that were not noticed, but expected by the teachers, as a means to form relations between theoretical aspects and measurement results. Also, problem solving sessions have been integrated into the lab sessions. Video recordings were also conducted during the spring 2003, when the new instructions were used. The students' activities were again analysed. A special focus of the thesis concerns the differences between the results from 2002 and 2003. The results are presented in four sections: Analysis of the students' questions and the teachers' answers during the lab-course 2002 Analysis of the links students need to make, the critical links for learning Analysis of the task structure before and after changes Analysis of the students' activities during the new course The thesis ends with a discussion of the conclusions which may be drawn about the possibilities to model and develop teaching sequences through research, especially concerning the aim to link theoretical models to the real world.
En stående fråga som lärare i naturvetenskapliga och tekniska utbildningar ställer är varför elever och studenter inte kopplar samman kunskaper från teoretiska kursmoment med den verklighet som möts vid laborationerna. Ett vanligt syfte med laborationer är att åstadkomma länkar mellan teori och verklighet, men dessa uteblir ofta. Många gånger används avancerade matematiska modeller och grafiska representationer, vilka studenterna lärt sig i tidigare kurser, men de har sällan eller aldrig tillämpat dessa kunskaper i andra ämnen. En av dessa matematiska hjälpmedel är Laplacetransformen, som främst används för att lösa differentialekvationer, och åskådliggöra transienta förlopp i ellära eller reglerteknik. På många universitet anses Laplacetransformen numera för svår för studenterna på kortare ingenjörsutbildningar, och kurser eller kursmoment som kräver denna har strukits ut utbildningsplanerna. Men, är det för svårt, eller beror det bara på hur man presenterar Laplacetransformen? Genom att låta studenterna arbeta parallellt med matematiken och de laborativa momenten, under kombinerade lab-lektionspass, och inte vid separata lektioner och laborationer, samt genom att variera övningsexemplen på ett mycket systematiskt sätt, enligt variationsteorin, visar vår forskning att studenterna arbetar med uppgifterna på ett helt annat sätt än tidigare. Det visar sig inte längre vara omöjligt att tillämpa Laplacetransformen redan under första året på civilingenjörsutbildning inom elektroteknik. Ursprungliga syftet med avhandlingen var att visa hur studenter arbetar med laborationsuppgifter, speciellt i relation till målet att länka samman teori och verklighet hur man kan förändra studenternas aktivitet, och därmed studenternas lärande, genom att förändra laborationsinstruktionen på ett systematiskt sätt. Under våren 2002 videofilmades studenter som utförde laborationer i en kurs i elkretsteori. Deras aktivitet analyserades. Speciellt studerades vilka frågor studenterna ställde till lärarna, på vilket sätt dessa frågor besvarades, och på vilket sätt svaren användes i den fortsatta aktiviteten. Detta ledde fram till en modell för lärande av sammansatta begrepp, som kunde användas både för att analysera vad studenterna gör och vad lärarna förväntar sig att studenterna ska lära sig. Med hjälp av modellen blev det då möjligt att se vad som behövde ändra i instruktionerna för att studenterna lättare skulle kunna utföra de aktiviteter som krävs för att länka teori och verklighet. Syftet med avhandlingen är därmed att ta fram en modell för lärande av ett sammansatt begrepp visa hur denna modell kan användas för såväl analys av önskat lärandeobjekt, som av studenternas aktivitet under laborationer, och därmed det upplevda lärandeobjektet använda modellen för att analysera vilka förändringar som är kritiska för  studenters lärande. Modellen användes för att förändra laborationsinstruktionerna. Lärarinterventionerna inkluderades i instruktionerna på ett systematiskt sätt utifrån dels vilka frågor som ställdes av studenterna, dels vilka frågor studenterna inte noterade, men som lärarna velat att studenterna skulle använda för att skapa relationer framför allt mellan teoretiska aspekter och mätresultat. Dessutom integrerades räkneövningar och laborationer. Videoinspelningar utfördes även våren 2003, då de nya instruktionerna användes. Även dessa analyserades med avseende på studenternas aktiviteter. Skillnader mellan resultaten från 2002 och 2003 står i fokus. Avhandlingens resultatdel består av: Analys av studenternas frågor och lärarnas svar under labkursen 2002 Analys av de länkar studenterna behöver skapa för att lära Analys av laborationsinstruktionerna före och efter förändringarna Analys av den laborationsaktivitet som blev resultatet av de nya instruktionerna, och vilket lärande som då blev möjligt Avhandlingen avlutas med en diskussion om de slutsatser som kan dras angående möjligheter att via forskning utveckla modeller av undervisningssekvenser för lärande där målet är att länka samman teori och verklighet
APA, Harvard, Vancouver, ISO, and other styles
5

Lakhanpal, Swati. "Interfacing a LabVIEW-driven DAQ instrument with LabWare LIMS." Thesis, 2009. http://hdl.handle.net/1805/1987.

Full text
Abstract:
ABSTRACT The main purpose of this project is to automate information management and analysis, as well as to integrate different types of data. We intend to interface data acquisition (DAQ) instruments with LIMS by using LabVIEWTM. LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is graphical programming software from National Instruments (NI). LabVIEW is the tool of choice due to its unparalleled connectivity to instruments, powerful data acquisition capabilities, natural dataflow-based graphical programming interface, scalability, and overall function completeness and designed specially for data acquisition. NI has many kinds of DAQ instruments that can be used with LabVIEW DAQ VI‘s (LabVIEW programs). LabVIEW, plug-in data acquisition (DAQ) boards will help perform single point and continuous measurements. LabWare LIMS is able to interface to a variety of instruments using LabWare LabStation module. Integrated LabStation is used to validate the results. The data used and generated by the instruments using LabVIEW will be maintained by a LIMS.
APA, Harvard, Vancouver, ISO, and other styles
6

Witty, Derick. "Implementation of a Laboratory Information Management System To Manage Genomic Samples." Thesis, 2013. http://hdl.handle.net/1805/3521.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
A Laboratory Information Management Systems (LIMS) is designed to manage laboratory processes and data. It has the ability to extend the core functionality of the LIMS through configuration tools and add-on modules to support the implementation of complex laboratory workflows. The purpose of this project is to demonstrate how laboratory data and processes from a complex workflow can be implemented using a LIMS. Genomic samples have become an important part of the drug development process due to advances in molecular testing technology. This technology evaluates genomic material for disease markers and provides efficient, cost-effective, and accurate results for a growing number of clinical indications. The preparation of the genomic samples for evaluation requires a complex laboratory process called the precision aliquotting workflow. The precision aliquotting workflow processes genomic samples into precisely created aliquots for analysis. The workflow is defined by a set of aliquotting scheme attributes that are executed based on scheme specific rules logic. The aliquotting scheme defines the attributes of each aliquot based on the achieved sample recovery of the genomic sample. The scheme rules logic executes the creation of the aliquots based on the scheme definitions. LabWare LIMS is a Windows® based open architecture system that manages laboratory data and workflow processes. A LabWare LIMS model was developed to implement the precision aliquotting workflow using a combination of core functionality and configured code.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "LabWare"

1

Shahriar, Hossain, Md Arabin Talukder, Hongmei Chi, Mohammad Rahman, Sheikh Ahamed, Atef Shalan, and Khaled Tarmissi. "Data Protection Labware for Mobile Security." In Security, Privacy, and Anonymity in Computation, Communication, and Storage, 183–95. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24907-6_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Neubert, S., T. Roddelkopf, B. Göde, X. Gu, S. Junginger, N. Stoll, and K. Thurow. "Intelligent Labware Transportation Solution for the Hierarchical Life Science Automation." In Informatics in Control, Automation and Robotics, 376–91. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11292-9_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Psillos, Dimitri, Hans Niedderer, and Matilde Vicentini. "Case Studies on Innovative Types of Labwork in Science Education." In Research in Science Education in Europe, 201–7. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9307-6_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Esteban, J., F. J. Colomer, M. Carlos, and A. Gallardo. "LABWASTE.12: Calculation Tool for the Design of Solid Waste Landfills with Inert Waste Recovery." In Lecture Notes in Management and Industrial Engineering, 131–44. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12754-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Séré, Marie-Geneviève. "Learning Science in the Laboratory: Issues raised by the European Project ‘Labwork in Science Education’." In Research in Science Education in Europe, 165–74. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9307-6_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Labwork and Science Teacher Education." In Science Education Research in Latin America, 185–206. Brill | Sense, 2020. http://dx.doi.org/10.1163/9789004409088_008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Spirit, twins, and ashes in Labwor, Northern Uganda: R. G. Abrahams." In The Interpretation of Ritual, 134–53. Routledge, 2012. http://dx.doi.org/10.4324/9780203715185-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "LabWare"

1

Li, Na, Lin Li, and Yuhong Liu. "FriPEL: Friendship Privacy Educational Labware." In 2018 International Symposium on Security and Privacy in Social Networks and Big Data (SocialSec). IEEE, 2018. http://dx.doi.org/10.1109/socialsec.2018.8760380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shahriar, Hossain, Kai Qian, Md Arabin Islam Talukder, and Reza Parizi. "Data Protection with SMSD Labware." In SIGCSE '19: The 50th ACM Technical Symposium on Computer Science Education. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3287324.3293785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Guo, Minzhe, Prabir Bhattacharya, Ming Yang, Kai Qian, and Li Yang. "Learning mobile security with android security labware." In Proceeding of the 44th ACM technical symposium. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2445196.2445394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Lei, Kai Qian, Qian Chen, Ragib Hasan, and Guifeng Shao. "Developing Hands-on Labware for Emerging Database Security." In SIGITE/RIIT 2016: The 17th Annual Conference on Information Technology Education and the 5th Annual Conference on Research in Information Technology. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2978192.2978225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Qian, Kai, Hossain Shahriar, Fan Wu, Lixin Tao, and Prabir Bhattacharya. "Labware for Secure Mobile Software Development (SMSD) Education." In ITiCSE '17: Innovation and Technology in Computer Science Education. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3059009.3072983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Qian, Kai, Chia-Tien Dan Lo, Minzhe Guo, Prabir Bhattacharya, and Li Yang. "Mobile security labware with smart devices for cybersecurity education." In 2012 IEEE 2nd Integrated STEM Education Conference (ISEC). IEEE, 2012. http://dx.doi.org/10.1109/isecon.2012.6204180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Qian, Kai, Dan Lo, Yi Pan, Yanqing Zhang, Xiaolin Hu, and Liang Hong. "The cross-curriculum mobile computing labware for CS (abstract only)." In the 43rd ACM technical symposium. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2157136.2157362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Guo, Minzhe, Kai Qian, Ming Yang, Chia-Tien Dan Lo, Kuosheng Ma, Liang Hong, and Li Yang. "Android-Based Mobile Sensory System Labware for Embedded System Education." In 2013 IEEE 13th International Conference on Advanced Learning Technologies (ICALT). IEEE, 2013. http://dx.doi.org/10.1109/icalt.2013.39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Qian, Kai, and Kuosheng Ma. "A fostering embedded system educationwith android sensory embedded system labware." In the 18th ACM conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2462476.2483799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Weeks, Michael, Yi Pan, and Yanqing Zhang. "Increasing Security Awareness in Undergraduate Courses with Labware (Abstract Only)." In SIGCSE '16: The 47th ACM Technical Symposium on Computing Science Education. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2839509.2850536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography