Academic literature on the topic 'Lagrange-Dirichlet theorem'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lagrange-Dirichlet theorem.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Lagrange-Dirichlet theorem"

1

Kuznetsov, Alexey. "Lagrange Inversion Theorem for Dirichlet series." Journal of Mathematical Analysis and Applications 493, no. 2 (2021): 124575. http://dx.doi.org/10.1016/j.jmaa.2020.124575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Alva, Gerard. "SOBRE LA RECÍPROCA DEL TEOREMA DE DIRICHLET-LAGRANGE." Selecciones Matemáticas 3, no. 2 (2016): 1–4. http://dx.doi.org/10.17268/sel.mat.2016.02.01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Peiffer, K. "On inversion of the lagrange-dirichlet theorem." Journal of Applied Mathematics and Mechanics 55, no. 4 (1991): 436–41. http://dx.doi.org/10.1016/0021-8928(91)90002-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

de Pera Garcia, Manuel Valentim, and Gerard John Alva Morales. "A Partial Reciprocal of Dirichlet Lagrange Theorem Detected by Jets." Qualitative Theory of Dynamical Systems 16, no. 2 (2016): 371–89. http://dx.doi.org/10.1007/s12346-016-0196-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kozlov, V. V. "Asymptotic motions and the inversion of the lagrange-dirichlet theorem." Journal of Applied Mathematics and Mechanics 50, no. 6 (1986): 719–25. http://dx.doi.org/10.1016/0021-8928(86)90079-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brogliato, Bernard. "Absolute stability and the Lagrange–Dirichlet theorem with monotone multivalued mappings." Systems & Control Letters 51, no. 5 (2004): 343–53. http://dx.doi.org/10.1016/j.sysconle.2003.09.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Palamodov, V. P. "On inversion of the Lagrange–Dirichlet theorem and instability of conservative systems." Russian Mathematical Surveys 75, no. 3 (2020): 495–508. http://dx.doi.org/10.1070/rm9945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hagedorn, Peter, and Jean Mawhin. "A simple variational approach to a converse of the Lagrange-Dirichlet theorem." Archive for Rational Mechanics and Analysis 120, no. 4 (1992): 327–35. http://dx.doi.org/10.1007/bf00380318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Iwaniec, Tadeusz, Jani Onninen, and Teresa Radice. "The Nitsche phenomenon for weighted Dirichlet energy." Advances in Calculus of Variations 13, no. 3 (2020): 301–23. http://dx.doi.org/10.1515/acv-2017-0060.

Full text
Abstract:
AbstractThe present paper arose from recent studies of energy-minimal deformations of planar domains. We are concerned with the Dirichlet energy. In general the minimal mappings need not be homeomorphisms. In fact, a part of the domain near its boundary may collapse into the boundary of the target domain. In mathematical models of nonlinear elasticity this is interpreted as interpenetration of matter. We call such occurrence the Nitsche phenomenon, after Nitsche’s remarkable conjecture (now a theorem) about existence of harmonic homeomorphisms between annuli. Indeed the round annuli proved to
APA, Harvard, Vancouver, ISO, and other styles
10

Arimoto, Suguru, and Morio Yoshida. "Modeling and Control of 2D Grasping under Rolling Contact Constraints between Arbitrary Shapes: A Riemannian-Geometry Approach." Journal of Robotics 2010 (2010): 1–13. http://dx.doi.org/10.1155/2010/926579.

Full text
Abstract:
Modeling, control, and stabilization of dynamics of two-dimensional object grasping by using a pair of multijoint robot fingers are investigated under rolling contact constraints and arbitrariness of the geometry of the object and fingertips. First, modeling of rolling motion between 2D rigid bodies with arbitrary shape is treated under the assumption that the two contour curves coincide at the contact point and share the same tangent. The rolling constraints induce the Euler equation of motion that is parameterized by a pair of arclength parameters and constrained onto the kernel space as an
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Lagrange-Dirichlet theorem"

1

Junior, Ricardo dos Santos Freire. "Instabilidade de pontos de equilíbrio de alguns sistemas lagrangeanos." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-03102007-162259/.

Full text
Abstract:
Neste trabalho, estudamos algumas inversões parciais do teorema de Dirichlet-Lagrange, essencialmente estendendo os resultados em dois graus de liberdade de Garcia e Tal (2003) para algumas situações em $R^$. Mais precisamente, um dos objetivos é mostrar, no contexto da mecânica lagrangeana, que se há um split da energia potencial em uma parte no plano cujo jato $k$ mostra que ela não tem mínimo no ponto de equilíbrio e existe o jato $k-1$ do seu gradiente, e a outra em $R^$ que tenha mínimo no ponto de equilíbrio, este é instável. A instabilidade do ponto de equilíbrio em estudo é provada mo
APA, Harvard, Vancouver, ISO, and other styles
2

Morales, Gerard John Alva. "Estabilidade de Liapunov e derivada radial." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-19112014-174237/.

Full text
Abstract:
Apresentaremos uma classe de energias potenciais $\\Pi \\in C^{\\infty}(\\Omega,R)$ que são s-decidíveis e que admitem funções auxiliares de Cetaev da forma $\\langle abla j^s\\Pi(q),q angle$, $q\\in \\Omega \\subset R^n$ que são s-resistentes.<br>We will present a class of potential energies $\\Pi \\in C^{\\infty}(\\Omega,R)$ that are s-decidable and that admit auxiliary functions of Cetaev of the form $\\langle abla j^s\\Pi(q),q angle$, $q \\in \\Omega \\subset R^n$ which are s-resistant.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Lagrange-Dirichlet theorem"

1

Mann, Peter. The Stationary Action Principle. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0007.

Full text
Abstract:
This crucial chapter focuses on the stationary action principle. It introduces Lagrangian mechanics, using first-order variational calculus to derive the Euler–Lagrange equation, and the inverse problem is described. The chapter then considers the Ostrogradsky equation and discusses the properties of the extrema using the second-order variation to the action. It then discusses the difference between action functions (of Dirichlet boundary conditions) and action functionals of the extremal path. The different types of boundary conditions (Dirichlet vs Neumann) are elucidated. Topics discussed i
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Lagrange-Dirichlet theorem"

1

"Using Lagrange Multipliers on the Dirichlet Increments." In The Krzyż Conjecture: Theory and Methods. WORLD SCIENTIFIC, 2021. http://dx.doi.org/10.1142/9789811226380_0028.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Lagrange-Dirichlet theorem"

1

Sah, Si Mohamed, and Brian P. Mann. "Stability of a Pivoting Fluid-Filled Container." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47997.

Full text
Abstract:
This paper investigates the stability of a pivoting cylindrical container that is slowly filled with fluid. The stability of the upright and tilt angle equilibria is studied by using the Lagrange-Dirichlet theorem. The potential energy of the system is given for two regions that are delimited by an edge angle, and two spill angles. A bifurcation diagram is obtained showing the stability of the upright and tilt angle equilibria as function of both the fluid height in the container and the pivot location. In particular, it is shown that the upright angle equilibrium undergoes a pitchfork bifurca
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!