Academic literature on the topic 'Lagrange mean value theorem'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lagrange mean value theorem.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Lagrange mean value theorem"

1

Lozada-Cruz, German. "Some variants of Lagrange's mean value theorem." Selecciones Matemáticas 7, no. 1 (2020): 144–50. http://dx.doi.org/10.17268/sel.mat.2020.01.13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mateljevic, Miodrag, Marek Svetlik, Miloljub Albijanic, and Nebojsa Savic. "Generalizations of the Lagrange mean value theorem and applications." Filomat 27, no. 4 (2013): 515–28. http://dx.doi.org/10.2298/fil1304515m.

Full text
Abstract:
In this paper we give a generalization of the Lagrange mean value theorem via lower and upper derivative, as well as appropriate criteria of monotonicity and convexity for arbitrary function f : (a, b) ( R. Some applications to the neoclassical economic growth model are given (from mathematical point of view).
APA, Harvard, Vancouver, ISO, and other styles
3

Jiang, Yinshan. "Discussion on the application of Lagrange mean value theorem." Journal of Physics: Conference Series 1682 (November 2020): 012058. http://dx.doi.org/10.1088/1742-6596/1682/1/012058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

王, 耀革. "Structure Analysis and Application of Lagrange Mean Value Theorem." Pure Mathematics 12, no. 02 (2022): 276–79. http://dx.doi.org/10.12677/pm.2022.122032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Smith, Robert S. "Rolle over Lagrange-Another Shot at the Mean Value Theorem." College Mathematics Journal 17, no. 5 (1986): 403. http://dx.doi.org/10.2307/2686248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Smith, Robert S. "Rolle over Lagrange—Another Shot at the Mean Value Theorem." College Mathematics Journal 17, no. 5 (1986): 403–6. http://dx.doi.org/10.1080/07468342.1986.11972987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

邱, 崇. "A Note of the Teaching of Lagrange Mean Value Theorem." Advances in Education 10, no. 01 (2020): 47–52. http://dx.doi.org/10.12677/ae.2020.101008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tong, Jingcheng. "84.60 The Mean Value Theorem of Lagrange Generalised to Involve Two Functions." Mathematical Gazette 84, no. 501 (2000): 515. http://dx.doi.org/10.2307/3620790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nabil, Tamer. "Solvability of Fractional Differential Inclusion with a Generalized Caputo Derivative." Journal of Function Spaces 2020 (December 26, 2020): 1–11. http://dx.doi.org/10.1155/2020/2917306.

Full text
Abstract:
This paper is devoted to the investigation of a kind of generalized Caputo semilinear fractional differential inclusions with deviated-advanced nonlocal conditions. Solvability of the problem is established by means of the Leray-Schauder’s alternative approach with the help of the Lagrange mean-value classical theorem. Finally, some examples are given to delineate the efficient of theoretical results.
APA, Harvard, Vancouver, ISO, and other styles
10

Tong, Jingcheng. "Classroom notes: The mean value theorems of Lagrange and Cauchy (II)." International Journal of Mathematical Education in Science and Technology 31, no. 3 (2000): 447–49. http://dx.doi.org/10.1080/002073900287200.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Lagrange mean value theorem"

1

Bel, Haj Frej Ghazi. "Estimation et commande décentralisée pour les systèmes de grandes dimensions : application aux réseaux électriques." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0139/document.

Full text
Abstract:
Les travaux de cette thèse portent sur l’estimation et la commande décentralisée des systèmes de grande dimension. L’objectif est de développer des capteurs logiciels pouvant produire une estimation fiable des variables nécessaires pour la stabilisation des systèmes non linéaires interconnectés. Une décomposition d’un tel système de grande dimension en un ensemble de n sous-systèmes interconnectés est primordiale. Ensuite, en tenant compte de la nature du sous-système ainsi que les fonctions d’interconnexions, des lois de commande décentralisées basées observateurs ont été synthétisées. Chaque
APA, Harvard, Vancouver, ISO, and other styles
2

Hassan, Lama. "Observation et commande des systèmes non linéaires à retard." Phd thesis, Université de Lorraine, 2013. http://tel.archives-ouvertes.fr/tel-00934943.

Full text
Abstract:
L'objectif de cette thèse est de développer des méthodes de synthèses d'observateurs et des contrôleurs basés sur un observateur pour les systèmes à retard. Différentes classes de systèmes ont été traitées avec différents types de retard. Trois méthodes ont été développées. La première méthode traite des systèmes non linéaires avec des non-linéarités lipschitziennes et consiste à transformer le système d'origine à un système LPV grâce à une reformulation de la propriété classique de Lipschitz. Cette technique est formulée pour les cas continu et discret, respectivement. Nous avons démontré, à
APA, Harvard, Vancouver, ISO, and other styles
3

Lin, Yu-Siang, and 林郁翔. "Discrete Mean Value Theorem." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/60305687811322887486.

Full text
Abstract:
碩士<br>國立中興大學<br>應用數學系所<br>102<br>In this thesis, we derive the mean value theorems for the super-harmonic, sub-harmonic and harmonic solutions on square domains. Moreover, we consider the mesh functions on the mesh squares and establish the discrete mean value theorem by using the Green’s identities on rectangles in R2. From the discrete mean value theorem, we obtain that the value of a discrete harmonic function at a mesh point (x0, y0) is the average of any discrete square which has center at this mesh point (x0, y0) . For further research, it is interesting to extend the result here to n
APA, Harvard, Vancouver, ISO, and other styles
4

Hwang, Gwo-Jwu, and 黃國祖. "Mean value Theorem for one-sided differentiable function." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/46244603358603144552.

Full text
Abstract:
碩士<br>國立臺北大學<br>統計學系<br>94<br>In the study of the behavior of probability density function of continuous random variable, if the functions are differentiable or piecewise differentiable, usually, one can apply the method of calculus to determine the monotonically, concavity, points of inflection and asymptotes of these functions to attain some properties of the probability distributions. Most of the tools in calculus are consequences of the Mean Value Theorem for Derivatives. It is a theorem about functions continuous in bounded closed intervals and differentiable in the interior of the interv
APA, Harvard, Vancouver, ISO, and other styles
5

Xu, Yuan-Feng, and 許原豐. "An analysis of optical flow algorithms for motion estimation by mean-value theorem." Thesis, 1992. http://ndltd.ncl.edu.tw/handle/94324912031756206063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Romero, Christopher 1978. "They Must Be Mediocre: Representations, Cognitive Complexity, and Problem Solving in Secondary Calculus Textbooks." Thesis, 2012. http://hdl.handle.net/1969.1/148224.

Full text
Abstract:
A small group of profit seeking publishers dominates the American textbook market and guides the learning of the majority of our nation’s calculus students. The College Board’s AP Calculus curriculum is a de facto national standard for this gateway course that is critically important to 21st century STEM careers. A multi-representational understanding of calculus is a central pillar of the AP curriculum. This dissertation asks whether this multi-representational vision is manifest in popular calculus textbooks. This dissertation began with a survey of all AP Calculus AB Examination free respo
APA, Harvard, Vancouver, ISO, and other styles
7

Reis, Valdir Delgado dos. "Teoremas do valor médio e intermédio." Master's thesis, 2020. http://hdl.handle.net/10400.2/10071.

Full text
Abstract:
O Teorema do valor médio e o Teorema do valor intermédio são importantes teoremas muito usados no Cálculo integral e diferencial e não só. Neste trabalho estamos muito interessados em perceber estes teoremas, estudá-los profundamente e perceber qual o contributo dos mesmos. Para isso, visto que estão diretamente interligados com continuidade, derivadas e integrais, tivemos necessidade de ir à origem no século XVII perceber como surgiu o Cálculo pelas mãos de Isaac Newton e Gottfried Leibniz para posteriormente compreender de forma mais integral o Teorema do valor médio e o Teorema do va
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Lagrange mean value theorem"

1

Ben-Israel, Adi, and Robert Gilbert. "Mean value theorem." In Computer-Supported Calculus. Springer Vienna, 2002. http://dx.doi.org/10.1007/978-3-7091-6146-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Smoryński, Craig. "The Mean Value Theorem." In MVT: A Most Valuable Theorem. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52956-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lang, Serge. "The Mean Value Theorem." In Undergraduate Texts in Mathematics. Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4419-8532-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mercer, Peter R. "The Mean Value Theorem." In More Calculus of a Single Variable. Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1926-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lang, Serge. "The Mean Value Theorem." In Undergraduate Texts in Mathematics. Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4613-0077-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Obata, Nobuaki. "The Levy Laplacian and mean value theorem." In Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0087857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hui-Ru, Chen, and Shang Chan-Juan. "Generalizations of the Second Mean Value Theorem for Integrals." In Lecture Notes in Electrical Engineering. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21697-8_83.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Di Crescenzo, Antonio, Barbara Martinucci, and Julio Mulero. "Applications of the Quantile-Based Probabilistic Mean Value Theorem to Distorted Distributions." In Computer Aided Systems Theory – EUROCAST 2017. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74727-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Indlekofer, Karl-Heinz, and Nikolai M. Timofeev. "A Mean-Value Theorem for Multiplicative Functions on the Set of Shifted Primes." In Analytic and Elementary Number Theory. Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-4507-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kosheleva, Olga, and Karen Villaverde. "Uncertainty-Related Example Explaining Why Calculus Is Useful: Example of the Mean Value Theorem." In How Interval and Fuzzy Techniques Can Improve Teaching. Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55993-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Lagrange mean value theorem"

1

Huang, Yong. "Research on Extensions and Applications of Integral Mean Value Theorem." In 2017 4th International Conference on Machinery, Materials and Computer (MACMC 2017). Atlantis Press, 2018. http://dx.doi.org/10.2991/macmc-17.2018.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Qingling, and Huazhou Hou. "Impulse analysis for nonlinear singular system via Differential Mean Value Theorem." In 2016 Chinese Control and Decision Conference (CCDC). IEEE, 2016. http://dx.doi.org/10.1109/ccdc.2016.7531145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ma, Wenting. "Study of Higher Order Differential Mean Value Theorem for Multivariate Function." In 2017 5th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2017). Atlantis Press, 2017. http://dx.doi.org/10.2991/icmmct-17.2017.281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pei, Hongmei, Xuanhai Li, and Jielin Shang. "Two Methods of Proving the Improved Mean Value Theorem of Integral." In International Conference on Education, Management, Computer and Society. Atlantis Press, 2016. http://dx.doi.org/10.2991/emcs-16.2016.132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ichalal, Dalil, Benoit Marx, Said Mammar, Didier Maquin, and Jose Ragot. "Observer for Lipschitz nonlinear systems: Mean Value Theorem and sector nonlinearity transformation." In 2012 IEEE International Symposium on Intelligent Control (ISIC). IEEE, 2012. http://dx.doi.org/10.1109/isic.2012.6398269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Messaoud, Ramzi Ben. "Nonlinear Unknown Input Observer Using Mean Value Theorem and Simulated Annealing Algorithm." In 2019 International Conference on Advanced Systems and Emergent Technologies (IC_ASET). IEEE, 2019. http://dx.doi.org/10.1109/aset.2019.8871002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Donghui Li. "On asymptotic properties for the median point of Cauchy Mean-value Theorem." In 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6002502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, C., Q. Lv, and J. Yan. "Numerical Solution of Mean-Value Theorem for Downward Continuation of Potential Fields." In 80th EAGE Conference and Exhibition 2018. EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201801462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ou, Yangjing, Chenghua Wang, and Feng Hong. "A Variable Step Maximum Power Point Tracking Method Using Taylor Mean Value Theorem." In 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/appeec.2010.5449521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rehman, O. U., I. R. Petersen, and B. Fidan. "A mean value theorem approach to robust control design for uncertain nonlinear systems." In 2012 American Control Conference - ACC 2012. IEEE, 2012. http://dx.doi.org/10.1109/acc.2012.6314677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!