Academic literature on the topic 'Lagrange mean value theorem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lagrange mean value theorem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lagrange mean value theorem"
Lozada-Cruz, German. "Some variants of Lagrange's mean value theorem." Selecciones Matemáticas 7, no. 1 (2020): 144–50. http://dx.doi.org/10.17268/sel.mat.2020.01.13.
Full textMateljevic, Miodrag, Marek Svetlik, Miloljub Albijanic, and Nebojsa Savic. "Generalizations of the Lagrange mean value theorem and applications." Filomat 27, no. 4 (2013): 515–28. http://dx.doi.org/10.2298/fil1304515m.
Full textJiang, Yinshan. "Discussion on the application of Lagrange mean value theorem." Journal of Physics: Conference Series 1682 (November 2020): 012058. http://dx.doi.org/10.1088/1742-6596/1682/1/012058.
Full text王, 耀革. "Structure Analysis and Application of Lagrange Mean Value Theorem." Pure Mathematics 12, no. 02 (2022): 276–79. http://dx.doi.org/10.12677/pm.2022.122032.
Full textSmith, Robert S. "Rolle over Lagrange-Another Shot at the Mean Value Theorem." College Mathematics Journal 17, no. 5 (1986): 403. http://dx.doi.org/10.2307/2686248.
Full textSmith, Robert S. "Rolle over Lagrange—Another Shot at the Mean Value Theorem." College Mathematics Journal 17, no. 5 (1986): 403–6. http://dx.doi.org/10.1080/07468342.1986.11972987.
Full text邱, 崇. "A Note of the Teaching of Lagrange Mean Value Theorem." Advances in Education 10, no. 01 (2020): 47–52. http://dx.doi.org/10.12677/ae.2020.101008.
Full textTong, Jingcheng. "84.60 The Mean Value Theorem of Lagrange Generalised to Involve Two Functions." Mathematical Gazette 84, no. 501 (2000): 515. http://dx.doi.org/10.2307/3620790.
Full textNabil, Tamer. "Solvability of Fractional Differential Inclusion with a Generalized Caputo Derivative." Journal of Function Spaces 2020 (December 26, 2020): 1–11. http://dx.doi.org/10.1155/2020/2917306.
Full textTong, Jingcheng. "Classroom notes: The mean value theorems of Lagrange and Cauchy (II)." International Journal of Mathematical Education in Science and Technology 31, no. 3 (2000): 447–49. http://dx.doi.org/10.1080/002073900287200.
Full textDissertations / Theses on the topic "Lagrange mean value theorem"
Bel, Haj Frej Ghazi. "Estimation et commande décentralisée pour les systèmes de grandes dimensions : application aux réseaux électriques." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0139/document.
Full textHassan, Lama. "Observation et commande des systèmes non linéaires à retard." Phd thesis, Université de Lorraine, 2013. http://tel.archives-ouvertes.fr/tel-00934943.
Full textLin, Yu-Siang, and 林郁翔. "Discrete Mean Value Theorem." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/60305687811322887486.
Full textHwang, Gwo-Jwu, and 黃國祖. "Mean value Theorem for one-sided differentiable function." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/46244603358603144552.
Full textXu, Yuan-Feng, and 許原豐. "An analysis of optical flow algorithms for motion estimation by mean-value theorem." Thesis, 1992. http://ndltd.ncl.edu.tw/handle/94324912031756206063.
Full textRomero, Christopher 1978. "They Must Be Mediocre: Representations, Cognitive Complexity, and Problem Solving in Secondary Calculus Textbooks." Thesis, 2012. http://hdl.handle.net/1969.1/148224.
Full textReis, Valdir Delgado dos. "Teoremas do valor médio e intermédio." Master's thesis, 2020. http://hdl.handle.net/10400.2/10071.
Full textBook chapters on the topic "Lagrange mean value theorem"
Ben-Israel, Adi, and Robert Gilbert. "Mean value theorem." In Computer-Supported Calculus. Springer Vienna, 2002. http://dx.doi.org/10.1007/978-3-7091-6146-3_7.
Full textSmoryński, Craig. "The Mean Value Theorem." In MVT: A Most Valuable Theorem. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52956-1_3.
Full textLang, Serge. "The Mean Value Theorem." In Undergraduate Texts in Mathematics. Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4419-8532-3_5.
Full textMercer, Peter R. "The Mean Value Theorem." In More Calculus of a Single Variable. Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1926-0_5.
Full textLang, Serge. "The Mean Value Theorem." In Undergraduate Texts in Mathematics. Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4613-0077-9_5.
Full textObata, Nobuaki. "The Levy Laplacian and mean value theorem." In Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0087857.
Full textHui-Ru, Chen, and Shang Chan-Juan. "Generalizations of the Second Mean Value Theorem for Integrals." In Lecture Notes in Electrical Engineering. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21697-8_83.
Full textDi Crescenzo, Antonio, Barbara Martinucci, and Julio Mulero. "Applications of the Quantile-Based Probabilistic Mean Value Theorem to Distorted Distributions." In Computer Aided Systems Theory – EUROCAST 2017. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74727-9_10.
Full textIndlekofer, Karl-Heinz, and Nikolai M. Timofeev. "A Mean-Value Theorem for Multiplicative Functions on the Set of Shifted Primes." In Analytic and Elementary Number Theory. Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-4507-8_9.
Full textKosheleva, Olga, and Karen Villaverde. "Uncertainty-Related Example Explaining Why Calculus Is Useful: Example of the Mean Value Theorem." In How Interval and Fuzzy Techniques Can Improve Teaching. Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55993-2_5.
Full textConference papers on the topic "Lagrange mean value theorem"
Huang, Yong. "Research on Extensions and Applications of Integral Mean Value Theorem." In 2017 4th International Conference on Machinery, Materials and Computer (MACMC 2017). Atlantis Press, 2018. http://dx.doi.org/10.2991/macmc-17.2018.2.
Full textZhang, Qingling, and Huazhou Hou. "Impulse analysis for nonlinear singular system via Differential Mean Value Theorem." In 2016 Chinese Control and Decision Conference (CCDC). IEEE, 2016. http://dx.doi.org/10.1109/ccdc.2016.7531145.
Full textMa, Wenting. "Study of Higher Order Differential Mean Value Theorem for Multivariate Function." In 2017 5th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2017). Atlantis Press, 2017. http://dx.doi.org/10.2991/icmmct-17.2017.281.
Full textPei, Hongmei, Xuanhai Li, and Jielin Shang. "Two Methods of Proving the Improved Mean Value Theorem of Integral." In International Conference on Education, Management, Computer and Society. Atlantis Press, 2016. http://dx.doi.org/10.2991/emcs-16.2016.132.
Full textIchalal, Dalil, Benoit Marx, Said Mammar, Didier Maquin, and Jose Ragot. "Observer for Lipschitz nonlinear systems: Mean Value Theorem and sector nonlinearity transformation." In 2012 IEEE International Symposium on Intelligent Control (ISIC). IEEE, 2012. http://dx.doi.org/10.1109/isic.2012.6398269.
Full textMessaoud, Ramzi Ben. "Nonlinear Unknown Input Observer Using Mean Value Theorem and Simulated Annealing Algorithm." In 2019 International Conference on Advanced Systems and Emergent Technologies (IC_ASET). IEEE, 2019. http://dx.doi.org/10.1109/aset.2019.8871002.
Full textDonghui Li. "On asymptotic properties for the median point of Cauchy Mean-value Theorem." In 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6002502.
Full textZhang, C., Q. Lv, and J. Yan. "Numerical Solution of Mean-Value Theorem for Downward Continuation of Potential Fields." In 80th EAGE Conference and Exhibition 2018. EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201801462.
Full textOu, Yangjing, Chenghua Wang, and Feng Hong. "A Variable Step Maximum Power Point Tracking Method Using Taylor Mean Value Theorem." In 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/appeec.2010.5449521.
Full textRehman, O. U., I. R. Petersen, and B. Fidan. "A mean value theorem approach to robust control design for uncertain nonlinear systems." In 2012 American Control Conference - ACC 2012. IEEE, 2012. http://dx.doi.org/10.1109/acc.2012.6314677.
Full text