Academic literature on the topic 'Lagrange space'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lagrange space.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Lagrange space"

1

Shukla, Suresh K., та P. N. Pandey. "Lagrange Spaces with (γ,β)-Metric". Geometry 2013 (30 січня 2013): 1–7. http://dx.doi.org/10.1155/2013/106393.

Full text
Abstract:
We study Lagrange spaces with (γ,β)-metric, where γ is a cubic metric and β is a 1-form. We obtain fundamental metric tensor, its inverse, Euler-Lagrange equations, semispray coefficients, and canonical nonlinear connection for a Lagrange space endowed with a (γ,β)-metric. Several other properties of such space are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Miron, Radu, and Renza Tavakol. "Geometry of space-time and generalized Lagrange spaces." Publicationes Mathematicae Debrecen 44, no. 1-2 (1994): 167–74. http://dx.doi.org/10.5486/pmd.1994.1338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shukla, H. S., та S. K. Mishra. "Subspaces of the Generalized Lagrange Space with the Metric gij (x, y) = γij (x) + ³ 1 − 1 η2(x) ´ yiyj". Journal of the Tensor Society 5, № 01 (2007): 41–47. http://dx.doi.org/10.56424/jts.v5i01.10443.

Full text
Abstract:
R. Miron and M. Anastesiei [4] have developed theory of subspaces of gen- eralized Lagrange spaces to a large extent in their monograph \Vector bundles and Lagrange spaces, application in relativity". In 1989 T. Kawaguchi and R. Miron [3] gave a class of generalized Lagrange space Mn = (M; gij(x; y)) where gij(x; y) = °ij(x) + 1 c2 yiyj ;
APA, Harvard, Vancouver, ISO, and other styles
4

Pandey, P. N., та Suresh K. Shukla. "On Almost φ-Lagrange Spaces". ISRN Geometry 2011 (27 грудня 2011): 1–16. http://dx.doi.org/10.5402/2011/505161.

Full text
Abstract:
We initiate a study on the geometry of an almost φ-Lagrange space (APL-space in short). We obtain the expressions for the symmetric metric tensor, its inverse, semispray coefficients, solution curves of Euler-Lagrange equations, nonlinear connection, differential equation of autoparallel curves, coefficients of canonical metrical d-connection, and h- and v-deflection tensors in an APL-space. Corresponding expressions in a φ-Lagrange space and an almost Finsler Lagrange space (AFL-space in short) have also been deduced.
APA, Harvard, Vancouver, ISO, and other styles
5

Dias, R. S. O., M. Martarelli, and P. Chiariotti. "Lagrange Multiplier State-Space Substructuring." Journal of Physics: Conference Series 2041, no. 1 (2021): 012016. http://dx.doi.org/10.1088/1742-6596/2041/1/012016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xie, T. F., and S. P. Zhou. "On approximation by trigonometric Lagrange interpolating polynomials." Bulletin of the Australian Mathematical Society 40, no. 3 (1989): 425–28. http://dx.doi.org/10.1017/s0004972700017482.

Full text
Abstract:
It is well-known that the approximation to f(x) ∈ C2π, by nth trigonometric Lagrange interpolating polynomials with equally spaced nodes in C2π, has an upper bound In(n)En(f), where En(f) is the nth best approximation of f(x). For various natural reasons, one can ask what might happen in Lp space? The present paper indicates that the result about the trigonometric Lagrange interoplating approximation in Lp space for 1 < p < ∞ may be “bad” to an arbitrary degree.
APA, Harvard, Vancouver, ISO, and other styles
7

Kasap, Zeki. "Weyl–Euler–Lagrange equations on twistor space for tangent structure." International Journal of Geometric Methods in Modern Physics 13, no. 07 (2016): 1650095. http://dx.doi.org/10.1142/s021988781650095x.

Full text
Abstract:
Twistor spaces are certain complex three-manifolds, which are associated with special conformal Riemannian geometries on four-manifolds. Also, classical mechanic is one of the major subfields for mechanics of dynamical system. A dynamical system has a state determined by a collection of real numbers, or more generally by a set of points in an appropriate state space for classical mechanic. Euler–Lagrange equations are an efficient use of classical mechanics to solve problems using mathematical modeling. On the other hand, Weyl submitted a metric with a conformal transformation for unified theory of classical mechanic. This paper aims to introduce Euler–Lagrage partial differential equations (mathematical modeling, the equations of motion according to the time) for the movement of objects on twistor space and also to offer a general solution of differential equation system using the Maple software. Additionally, the implicit solution of the equation will be obtained as a result of a special selection of graphics to be drawn.
APA, Harvard, Vancouver, ISO, and other styles
8

Burian, Sergey N. "Reaction forces and friction forces in the dynamics of systems with geometric singularities." Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 11, no. 4 (2024): 755–71. https://doi.org/10.21638/spbu01.2024.411.

Full text
Abstract:
The properties of the holonomic mechanical systems motion with parameters are discussed. For some (critical) parameter values, the configuration space of a mechanical system is a manifold with singularities. For other parameter values, the configuration space is a smooth manifold. It is assumed that the sliding friction force according to the Amonton-Coulomb model can act upon one of the material points of the mechanical system. When the parameters of a mechanical system differ from critical values, then the classical Lagrange equations could be applied to describe its dynamics. The point of interest is the motion on smooth manifolds near points which transform into singular points as the parameters of the mechanical system tend to critical values. The behavior of reaction forces and Lagrange multipliers for such “pre-singular” points is considered. Two types of configuration spaces with singularities are studied: the union of two intersecting curves in the plane and the union of two tangent curves in the plane. For the first time, various variants of the Lagrange multipliers behavior are shown using the example of a given type of perturbation of configuration spaces with singularities. In general, it is proven that for a singularity of the intersection type, the Lagrange multipliers become unlimited near the singular point (on a manifold with singularities), regardless of the influence of the friction force. For a tangency singularity type, there are different variants with taking into account the friction force. For one type of perturbation of the configuration space, the resulting Lagrange multipliers are limited. For other type of perturbation of the configuration space, the resulting Lagrange multipliers are unlimited. The general property of friction force for the considered mechanical systems is derived. If the friction force is taken into account, then there are two solutions for reaction forces when moving near a singular point in one direction, but there are no solutions when moving in the other direction.
APA, Harvard, Vancouver, ISO, and other styles
9

Lal, Chandra, та Prasad Yadav Ganga. "ON CONFORMAL TRANSFORMATION OF LAGRANGE SPACE WITH (Γ, Β)-METRIC". INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER RESEARCH 09, № 02 (2021): 2178–86. https://doi.org/10.47191/ijmcr/v9i2.01.

Full text
Abstract:
The present paper is a study of the conformal transformation of the Lagrange space with (γ, β)-metric. The conformal transformation of the spray coefficient and Riemann curvature are express in Lagrange space with (γ, β)-metric. Further, find out the condition that a conformal transformation of Lagrange space with (γ, β)-metric is locally dually flat if and only if the transformation is a homothety. Moreover, the conditions for the transform metrics to be Einstein and isotropic mean Berwald curvature are also find.
APA, Harvard, Vancouver, ISO, and other styles
10

Borwein, P. B., T. F. Xie, and S. P. Zhou. "On approximation by trigonometric Lagrange interpolating polynomials II." Bulletin of the Australian Mathematical Society 45, no. 2 (1992): 215–21. http://dx.doi.org/10.1017/s0004972700030070.

Full text
Abstract:
We show that trigonometric Lagrange interpolating approximation with arbitrary real distinct nodes in Lp space for 1 ≤ p < ∞, as that with equally spaced nodes in Lp space for 1 < p < ∞ in an earlier paper by T.F. Xie and S.P. Zhou, may also be arbitrarily “bad”. This paper is a continuation of this earlier work by Xie and Zhou, but uses a different method.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Lagrange space"

1

Maietti, Sara. "A new isotopic fragments identification with Lagrange Multipliers in the FOOT experiment." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25497/.

Full text
Abstract:
Hadrontherapy is one of the available techniques used nowadays to treat cancer. Specifically, it employs beams of protons or heavier ions with initial energies of hundreds of MeV/u. Hadrontherapy has an advantageous energy release in the patient, allowing to irradiate the cancer volume in a more precise way and to spare the healthy tissues surrounding it. The main drawback of this kind of therapy is the nuclear interaction of the primary beam with the nuclei constituting the irradiated tissue. Target and projectile nuclear fragmentation could have a dangerous biological effect on tissues surrounding the tumor. Specifically, target fragments have a very short range and are difficultly detected. For this reason the experimental panorama is very poor, thus reducing the precision in the evaluation of success or induced risk of hadrontherapy treatments. For this purpose, the FOOT (FragmentatiOn Of Target) experiment has been designed. It aims at filling the gap both in projectile and target fragmentation experimental data, measuring the fragment production cross section by using in the latter an inverse kinematic technique. At larger energies, the FOOT measurements will be useful to evaluate the interaction of the space radiation field with materials composing the spaceship hull in a long term space mission (typically on Mars), in order to assess the radiation-induced damage on astronauts’ health and electronics on board. The FOOT apparatus allows to identify nuclear fragments by measuring their charge Z and their number of mass A. The latter is measured in three redundant ways, which need to be combined to obtain a best estimation of A. In the present thesis, the technique of Lagrange Multipliers used for the constrained minimization of functions, will be introduced and implemented in the FOOT analysis code to reconstruct the number of mass of nuclear fragments. Moreover, the results of the method will be compared to the ones already implemented in the experiment.
APA, Harvard, Vancouver, ISO, and other styles
2

Veglia, Luca. "Multisymplectic formalism for theories of super-fields and non-equivalent symplectic structures on the covariant phase space." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC303/document.

Full text
Abstract:
Le Calcul des Variations et son interprétation géométrique ont toujours joué un rôle crucial en Physique Mathématique, que ce soit par le formalisme lagrangien, ou à travers les équations hamiltoniennes.Le formalisme multisymplectique permet une description géométrique de dimension finie des théories de champ classiques (qui correspondent à des problèmes variationnels avec plusieurs variables spatio-temporelles) vues d’un point de vue hamiltonien. La géométrie multisymplectique joue un rôle similaire à celui de la géométrie symplectique dans la description de la mécanique hamiltonienne classique. De plus, l’approche multisymplectique fournit un outil pour construire une structure symplectique sur l’espace des solutions de la théorie des champs et pour l’étudier.Dans cette thèse, je m’intéresse principalement au formalisme multisymplectique pour construire des théories de champs de premier ordre et j’espère pouvoir donner deux principales contributions originales :– Je montre que, dans certaines situations, la structure symplectique de l’espace des phases covariant peut en effet dépendre du choix de la topologie du découpage de l’espace-temps en l’espace et en le temps;– Je construis une extension du formalisme multisymplectique aux théories de super-champs. En tant que «sous-produit», je présente une autre contribution que j’espère intéressante :– Je définie des formes fractionnaires sur des supervariétés avec leur calcul de Cartan. Ces formes fractionnaires se révèlent utiles pour construire le formalisme multisymplectique pour les théories de super-champs.Les ingrédients principaux du formalisme que j'utilise sont : l’espace des multimoments de dimension finie P et son extension aux théories de super-champs que je définie ; la superforme lagrangienne, le superhamiltonien et la superforme multisymplectique. Dans la thèse je montre aussi un théorème de comparaison qui permets de clarifier les relations existant entre les théories dites en composantes et les théories de superchamps. J’explique comment le formalisme supermultisymplectique peut être utilisé pour définir des super crochets de Poisson pour les superchamps. Je donne une version "super" du premier théorème de Noether valable pour l'action de supergroupes de symétrie et je propose une extension « super » de l'application multimoment. Enfin je présente quelques exemples montrant comment toute la théorie peut être mise en œuvre : en particulier j'étudie la superparticule libre et le modèle sigma 3-dimensionnel<br>The Calculus of Variations and its geometric interpretation always played a key role in Mathematical Physics, either through the Lagrangian formalism, or through the Hamiltonian equations.The multisymplectic formalism allows a finite dimensional geometric description of classical field theories seen from an Hamiltonian point of view. Multisymplectic geometry plays the same role played by symplectic geometry in the description of classical Hamiltonian mechanics. Moreover the multisymplectic approach provides a tool for building a symplectic structure on the space of solutions of the field theory and for investigating it.In this thesis I use the multisymplectic formalism to build first order field theories and I hope to give two main original contributions:– I show that, in some situations, the symplectic structure on the covariant phase space may indeed depend from the choice of splitting of spacetime in space and time;– I extend the multisymplectic formalism to superfield theories.As a "byproduct", I present another contribution:– I define fractional forms on supermanifolds with their relative Cartan Calculus. These fractional forms are useful to build the multisymplectic formalism for superfield theories.The main ingredients of the formalism I use are: the finite dimensional multimomenta phase space P and its extension to super field theories, which I give; the Lagrangian superform; the super-Hamiltonian, the multisymplectic superform.In my thesis I also prove a Comparison Theorem which allows to clarify the relations existing between the so called components theories and the so called superfield theories. I explain how the supermultisymplectic formalism can be used to define super Poisson brackets for super fields. I give a "super" version of the first Noether theorem valid for the action of supergroups of symmetry and I propose a “super” extension of the multimomentum map.Finally I present some examples showing how all the theory can be implemented: I study the free superparticle and the 3-dimensional sigma-model
APA, Harvard, Vancouver, ISO, and other styles
3

Lamichhane, Bishnu P. "Higher order mortar finite elements with dual Lagrange multiplier spaces and applications." [S.l. : s.n.], 2006. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-26215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Steck, Daniel [Verfasser], Christian [Gutachter] Kanzow, Michael [Gutachter] Ulbrich, and Christian [Gutachter] Meyer. "Lagrange Multiplier Methods for Constrained Optimization and Variational Problems in Banach Spaces / Daniel Steck ; Gutachter: Christian Kanzow, Michael Ulbrich, Christian Meyer." Würzburg : Universität Würzburg, 2018. http://d-nb.info/1174143622/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dumont, Andre. "Convergence, interpolation, échantillonnage et bases de Riesz dans les espaces de Fock." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4754/document.

Full text
Abstract:
Nous étudions le problème d'unicité, de l'interpolation faible et de la convergence de la série d'interpolation de Lagrange dans les espaces de Fock pondérés par des poids radiaux. Nous étudions aussi les suites d'échatillonnage, d'interpolation et les bases de Riesz dans les petit espaces de Fock<br>We study the uniqueness sets, the weak interpolation sets, and convergence of the Lagrange interpolation series in radial weighted Fock spaces. We study also sampling, interpolation and Riesz bases in small radial weighted Fock spaces
APA, Harvard, Vancouver, ISO, and other styles
6

Foltran, Julien. "Les monastères et l'espace urbain et périurbain médiéval en Pays d'Aude : Lagrasse, Alet et Caunes." Thesis, Toulouse 2, 2016. http://www.theses.fr/2016TOU20132/document.

Full text
Abstract:
À travers les exemples de Lagrasse, Alet-les-Bains et Caunes-Minervois, cette thèse propose de déterminer les mécanismes et le rôle des acteurs du développement des bourgs monastiques du VIIIe au milieu du XVIe siècle en pays d’Aude. Les modalités du peuplement des sites sont appréhendées, ainsi que les relations entre la communauté des religieux et celle des habitants. La construction de l’espace urbain de ces villes moyennes du Moyen Âge est un des thèmes principaux, abordé à travers l’inventaire des maisons, l’analyse des plans anciens et les sources écrites médiévales et modernes. L’espace périurbain est envisagé comme un secteur permettant aux deux communautés d’assurer une partie de leur approvisionnement et, en ce sens, comme un espace qu’elles devaient se partager et qui devenait essentiel dans les relations qu’elles entretenaient<br>Through the examples of Lagrasse, Alet-les-Bains and Caunes-Minervois, this thesis intends to determine the mechanisms and the stakeholders’ role in the development of monastic towns in the Aude department from the 8th century to the mid-16th century. The modes of settlement on these sites are examined, as well as the relations between the religious community and the inhabitants. The construction of urban space in these medium-sized medieval towns is one of the main topics addressed through the inventory of houses, the analysis of historic plans and of medieval or modern written sources. The peri-urban space is regarded as an area allowing both communities to secure a part of their supplies and, in this sense, as a space they had to share and that was essential to the relations between them
APA, Harvard, Vancouver, ISO, and other styles
7

Foltran, Julien. "Les monastères et l'espace urbain et périurbain médiéval en Pays d'Aude : Lagrasse, Alet et Caunes." Electronic Thesis or Diss., Toulouse 2, 2016. http://www.theses.fr/2016TOU20132.

Full text
Abstract:
À travers les exemples de Lagrasse, Alet-les-Bains et Caunes-Minervois, cette thèse propose de déterminer les mécanismes et le rôle des acteurs du développement des bourgs monastiques du VIIIe au milieu du XVIe siècle en pays d’Aude. Les modalités du peuplement des sites sont appréhendées, ainsi que les relations entre la communauté des religieux et celle des habitants. La construction de l’espace urbain de ces villes moyennes du Moyen Âge est un des thèmes principaux, abordé à travers l’inventaire des maisons, l’analyse des plans anciens et les sources écrites médiévales et modernes. L’espace périurbain est envisagé comme un secteur permettant aux deux communautés d’assurer une partie de leur approvisionnement et, en ce sens, comme un espace qu’elles devaient se partager et qui devenait essentiel dans les relations qu’elles entretenaient<br>Through the examples of Lagrasse, Alet-les-Bains and Caunes-Minervois, this thesis intends to determine the mechanisms and the stakeholders’ role in the development of monastic towns in the Aude department from the 8th century to the mid-16th century. The modes of settlement on these sites are examined, as well as the relations between the religious community and the inhabitants. The construction of urban space in these medium-sized medieval towns is one of the main topics addressed through the inventory of houses, the analysis of historic plans and of medieval or modern written sources. The peri-urban space is regarded as an area allowing both communities to secure a part of their supplies and, in this sense, as a space they had to share and that was essential to the relations between them
APA, Harvard, Vancouver, ISO, and other styles
8

Jelena, Stojanov. "Anisotropic frameworks for dynamical systems and image processing." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2015. https://www.cris.uns.ac.rs/record.jsf?recordId=93698&source=NDLTD&language=en.

Full text
Abstract:
The research topic of this PhD thesis is a comparative analysis of classical specic&nbsp;geometric frameworks and of their anisotropic extensions; the construction of three different&nbsp;types of Finsler frameworks, which are suitable for the analysis of the cancer cells population&nbsp;dynamical system; the development of the anisotropic Beltrami framework theory with the&nbsp;derivation of the evolution&nbsp;ow equations corresponding to different classes of anisotropic&nbsp;metrics, and tentative applications in image processing.<br>Predmet istraživanja doktorske disertacije je uporedna analiza klasičnih i specifičnih&nbsp;geometrijskih radnih okruženja i njihovih anizotropnih pro&scaron;irenja; konstrukcija &nbsp;tri Finslerova&nbsp;radna okruženja različitog tipa koja su pogodna za analizu dinamičkog &nbsp;sistema populacije&nbsp;kanceroznih ćelija; razvoj teorije anizotropnog Beltramijevog radnog okruženja i formiranje&nbsp;jednačina evolutivnog toka za različite klase anizotropnih metrika, kao i mogućnost primene&nbsp;dobijenih teorijskih rezultata u digitalnoj obradi slika.
APA, Harvard, Vancouver, ISO, and other styles
9

Verovic, Patrick. "Entropies et métriques de Finsler." Grenoble 1, 1996. http://www.theses.fr/1996GRE10138.

Full text
Abstract:
Pose au debut des annees 80 par a. Katok et m. Gromov, le probleme riemannien de l'entropie minimale a recu une reponse positive en 1994 grace aux resultats de g. Besson, g. Courtois et s. Gallot. Comme un prolongement de ce travail, l'objet de cette these est l'etude du minimum des entropies volumique et topologique pour les metriques de finsler qui constituent la plus petite extension de la geometrie de riemann. Les trois premiers chapitres conduisent a la construction explicite d'un contre-exemple general a la conjecture finslerienne de l'entropie volumique minimale sur les espaces riemanniens compacts, localement symetriques, de type non-compact et de rang au moins egal a deux. De plus, ce contre-exemple est l'unique minimum de l'entropie volumique parmi les metriques de finsler g-invariantes normalisees par le volume finslerien de la variete. Dans une deuxieme partie, relative au cas du rang un et regroupant les chapitres iv et v, on prouve, avec la meme normalisation que precedemment, le caractere critique des metriques riemanniennes hyperboliques pour l'entropie topologique sur l'ensemble de toutes les metriques de finsler d'une variete compacte de dimension quelconque. Par ailleurs, nous obtenons un resultat identique pour les surfaces compactes en normalisant par le volume de liouville des fibres spheriques, et ce, apres avoir montre que les deux manieres de normaliser ne sont pas equivalentes dans le cadre de la geometrie finslerienne
APA, Harvard, Vancouver, ISO, and other styles
10

Ngo, Fabien. "Quantum structures of some non-monotone Lagrangian submanifolds." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210039.

Full text
Abstract:
In this thesis we present a slight generalisation of the Pearl complex or relative quantum homology to some non monotone Lagrangian submanifolds. First we develop the theory for the so called almost monotone Lagrangian submanifolds, We apply it to uniruling problems as well as estimates for the relative Gromov width. In the second part we develop the theory for toric fiber in toric Fano manifolds, recovering previous computaional results of Floer homology .<br>Doctorat en Sciences<br>info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Lagrange space"

1

Center, NASA Glenn Research, ed. Finite element simulation of a space shuttle solid rocket booster aft skirt splashdown using an arbitrary Lagrangian-Eulerian approach. NASA Glenn Research Center, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Miron, Radu. The Geometry of Higher-Order Lagrange Spaces. Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-017-3338-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Miron, Radu, Dragos Hrimiuc, Hideo Shimada, and Sorin V. Sabau. The Geometry of Hamilton and Lagrange Spaces. Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-47135-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Radu, Miron, ed. The geometry of Hamilton and Lagrange spaces. Kluwer Academic Publishers, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brașov), National Seminar on Finsler and Lagrange Spaces (4th 1986 Universitatea din. The proceedings of the fourth National Seminar on Finsler and Lagrange Spaces. Universitatea din Brașov, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

National Seminar on Finsler and Lagrange Spaces (5th 1988 Brașov, Romania). The Proceedings of the Fifth National Seminar of Finsler and Lagrange Spaces: In honour of the 60th birthday of Professor Doctor, Radu Miron, Brașov, 10-15th of February 1988. Societatea de Stiinte Matematice din R.S. Romania, Universitatea din Brașov, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Miron, Radu, and Mihai Anastasiei. The Geometry of Lagrange Spaces: Theory and Applications. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0788-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Munteanu, Gheorghe. Complex Spaces in Finsler, Lagrange and Hamilton Geometries. Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2206-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Miron, Radu. The Geometry of Lagrange Spaces: Theory and Applications. Springer Netherlands, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Miron, Radu. The geometry of Lagrange spaces: Theory and applications. Kluwer Academic Publishers, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Lagrange space"

1

Longuski, James M., Felix R. Hoots, and George E. Pollock IV. "Evaluation of the Lagrange Brackets." In Space Technology Library. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89758-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Crâşmăreanu, Mircea. "The Gaussian Curvature for the Indicatrix of a Generalized Lagrange Space." In Finsler and Lagrange Geometries. Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0405-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sterbeţi, Cătălin, and Brânduşa Nicolaescu. "On the Almost Finslerian Lagrange Space of Second Order with (α, β) Metric." In Finsler and Lagrange Geometries. Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0405-2_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Longuski, James M., Felix R. Hoots, and George E. Pollock IV. "The Lagrange Planetary Equations for a General Perturbing Force." In Space Technology Library. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89758-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dariescu, C., and Marina-Aura Dariescu. "On the Quantization of the Complex Scalar Fields in S3 x R Space-Time." In Lagrange and Finsler Geometry. Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8650-4_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Martin, Christopher, Bruce A. Conway, and Pablo Ibán̈ez. "Optimal Low-Thrust Trajectories to the Interior Earth-Moon Lagrange Point." In Space Manifold Dynamics. Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0348-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shimada, Hideo, and Vasile Sorin Sabău. "On Corrected form of an Old Result: Necessary and Sufficient Conditions of a Randers Space to be of Constant Curvature." In Finsler and Lagrange Geometries. Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0405-2_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Miron, Radu, and Mihai Anastasiei. "Geometry of the Total Space of a Vector Bundle." In The Geometry of Lagrange Spaces: Theory and Applications. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0788-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Miron, Radu, and Mihai Anastasiei. "Geometry of the Total Space of a Tangent Bundle." In The Geometry of Lagrange Spaces: Theory and Applications. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0788-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Miron, Radu, and Mihai Anastasiei. "Lagrange Spaces." In The Geometry of Lagrange Spaces: Theory and Applications. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0788-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Lagrange space"

1

Stanko, Jason, James Coder, and Sven Schmitz. "Shape Optimization of Rotorcraft Airfoils Using a Genetic Algorithm." In Vertical Flight Society 80th Annual Forum & Technology Display. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0074-2018-12706.

Full text
Abstract:
In this work, a genetic algorithm was implemented to perform an airfoil shape optimization with constraints applied to the airfoil cross-sectional area and pitching-moment coefficient. Constraints are enforced through the use of an augmented Lagrange penalty function. The design variables are formed through a class shape transformation approach with orthogonal, polynomial basis modes. The use of an orthogonal basis provides decreased levels of multicollinearity in higher-order design spaces, while still maintaining the completeness of lower-order spaces. The optimization methodology is demonstrated on the tip airfoil of a UH-60A baseline rotor. The design trade-offs of a new tip airfoil are investigated where the optimized tip section shows improvements in forward-flight performance in exchange for a small reduction in the rotor's stall margin.
APA, Harvard, Vancouver, ISO, and other styles
2

Kamiya, Keisuke, Makoto Sawada, and Yuji Furusawa. "Continuous Null Space Method for Constrained Mechanical Systems." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48150.

Full text
Abstract:
The governing equations for multibody systems are, in general, formulated in the form of differential algebraic equations (DAEs) involving the Lagrange multipliers. It is desirable for efficient and accurate analysis to eliminate the Lagrange multipliers and dependent variables. As a method to solve the DAEs by eliminating the Lagrange multipliers, there is a method called the null space method. In this report, first, it is shown that using the null space matrix one can eliminate the Lagrange multipliers and reduce the number of velocities to that of the independent ones. Then, a new method to obtain the continuous null space matrix is presented. Finally, the presented method is applied to four-bar linkages.
APA, Harvard, Vancouver, ISO, and other styles
3

Gu, Quwu, Junqing Cao, and Yiping Sun. "Lagrange invariant, interference invariant, and space bandwidth product." In International Conference on Holography and Optical Information Processing, edited by Guoguang Mu, Guofan Jin, and Glenn T. Sincerbox. SPIE, 1996. http://dx.doi.org/10.1117/12.263053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mthawer, Jasim Ghetheeth, and Nada Zuhair Abd AL-Sada. "On approximation by Lagrange polynomials in weighted space." In 3RD INTERNATIONAL CONFERENCE ON MATHEMATICS, AI, INFORMATION AND COMMUNICATION TECHNOLOGIES: ICMAICT2023. AIP Publishing, 2025. https://doi.org/10.1063/5.0263007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hopkins, Randall, and H. Stahl. "A Large Monolithic Telescope Placed at the Second Sun-Earth Lagrange Point." In AIAA SPACE 2007 Conference & Exposition. American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-6166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kamiya, Keisuke, and Yusaku Yamashita. "Null Space Method of Differential Equation Type for Motion Analysis of Multibody Systems." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67781.

Full text
Abstract:
The governing equations of multibody systems are, in general, formulated in the form of differential algebraic equations (DAEs) involving the Lagrange multipliers. For efficient and accurate analysis, it is desirable to eliminate the Lagrange multipliers and dependent variables. Methods called null space method and Maggi’s method eliminate the Lagrange multipliers by using the null space matrix for the constraint Jacobian. In previous reports, one of the authors presented methods which use the null space matrix. In the procedure to obtain the null space matrix, the inverse of a matrix whose regularity may not be always guaranteed. In this report, a new method is proposed in which the null space matrix is obtained by solving differential equations that can be always defined by using the QR decomposition, even if the constraints are redundant. Examples of numerical analysis are shown to validate the proposed method.
APA, Harvard, Vancouver, ISO, and other styles
7

Kamiya, Keisuke. "Time-Differentiable Null Space Method for Constrained Mechanical Systems (Application to a Rheonomic System)." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12963.

Full text
Abstract:
The governing equations of multibody systems are, in general, formulated in the form of differential algebraic equations (DAEs) involving the Lagrange multipliers. For efficient and accurate analysis, it is desirable to eliminate the Lagrange multipliers and dependent variables. Methods called null space method and Maggi’s method eliminate the Lagrange multipliers by using the null space matrix for the coefficient matrix which appears in the constraint equation in velocity level. In a previous report, the author presented a method to obtain a time differentiable null space matrix for scleronomic systems, whose constraint does not depend on time explicitly. In this report, the method is generalized to rheonomic systems, whose constraint depends on time explicitly. Finally, the presented method is applied to four-bar linkages.
APA, Harvard, Vancouver, ISO, and other styles
8

Jain, Abhishek. "Medium lift launch vehicles catalog design: Lagrange point L2 mission and habitat design concept." In AIAA SPACE 2014 Conference and Exposition. American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-4472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sodnik, Zoran, Clemens Heese, Pantelis-Daniel Arapoglou, et al. "Deep-space Optical Communication System (DOCS) for ESA's Space Weather mission to Lagrange orbit L5." In 2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS). IEEE, 2017. http://dx.doi.org/10.1109/icsos.2017.8357207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bookless, John, and Colin McInnes. "Control of Lagrange Point Orbits Using Solar Sail ..." In 56th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.iac-05-c1.6.03.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Lagrange space"

1

Vozmischeva, Tatiana G. Mathematical Aspects in Celestial Mechanics, the Lagrange and Euler Problems in the Lobachevsky Space. GIQ, 2012. http://dx.doi.org/10.7546/giq-1-2000-283-298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography