Books on the topic 'Lagrangian points'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 31 books for your research on the topic 'Lagrangian points.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
1959-, Fukaya Kenji, ed. Lagrangian intersection floer theory: Anomaly and obstruction. American Mathematical Society, 2009.
Find full textG, Gómez, ed. Dynamics and mission design near libration points. World Scientific, 2001.
Find full textBaldomá, Inmaculada. Exponentially small splitting of invariant manifolds of parabolic points. American Mathematical Society, 2004.
Find full textAmbrosetti, A. Periodic solutions of singular Lagrangian systems. Birkhäuser, 1993.
Find full textMazzucchelli, Marco. Critical Point Theory for Lagrangian Systems. Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0163-8.
Full textservice), SpringerLink (Online, ed. Critical Point Theory for Lagrangian Systems. Springer Basel AG, 2012.
Find full textK, Prasad. Simulation studies on cyclone track prediction by quasi-lagrangian model (QLM) in some historical and recent cases in the Bay of Bengal, using global re-analysis and forecast grid point data sets. SAARC Meteorological Research Centre, 2006.
Find full textSalzer, Herbert E., Norman Levine, and Saul Serben. Tables for Lagrangian Interpolation Using Chebyshev Points. Applied Science Pubn, 1988.
Find full textDeruelle, Nathalie, and Jean-Philippe Uzan. Lagrangian mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0008.
Full textLagrangian intersection floer theory: Anomaly and obstruction. American Mathematical Society, 2009.
Find full textSimo, Carles, J. Llibre, and R. Martinez. Dynamics and Mission Design Near Libration Points, Vol. II: Fundamentals: The Case of Triangular Libration Points. World Scientific Publishing Company, 2001.
Find full textDynamics and Mission Design Near Libration Points, Vol. II: Fundamentals: The Case of Triangular Libration Points. World Scientific Pub Co Inc, 2001.
Find full textJorba, Angel, Carles Simo, and Josep Masdemont. Dynamics and Mission Design Near Libration Points, Vol. III, Advanced Methods for Collinear Points. World Scientific Publishing Company, 2001.
Find full textJorba, Angel, Carles Simo, and Josep Masdemont. Dynamics and Mission Design Near Libration Points, Vol. IV: Advanced Methods for Triangular Points. World Scientific Publishing Company, 2001.
Find full textSimo, Carles, J. Llibre, and R. Martinex. Dynamics and Mission Design Near Libration Points, Volume I : Fundamentals : The Case of Collinear Libration Points (World Scientific Monograph Series in Mathematics). World Scientific Publishing Company, 2001.
Find full textMcDuff, Dusa, and Dietmar Salamon. The arnold conjecture. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198794899.003.0012.
Full textMann, Peter. Point Transformations in Lagrangian Mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0009.
Full textCoti-Zelati, V., and A. Ambrosetti. Periodic Solutions of Singular Lagrangian Systems. Birkhauser Verlag, 2012.
Find full textMazzucchelli, Marco. Critical Point Theory for Lagrangian Systems. Springer Basel AG, 2014.
Find full textMazzucchelli, Marco. Critical Point Theory for Lagrangian Systems. Springer, 2011.
Find full textKachelriess, Michael. Classical mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198802877.003.0001.
Full textMann, Peter. Poisson Brackets & Angular Momentum. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0017.
Full textZeitlin, Vladimir. Vortex Dynamics on the f and beta Plane and Wave Radiation by Vortices. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198804338.003.0006.
Full textSorrentino, Alfonso. The Hamilton-Jacobi Equation and Weak KAM Theory. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691164502.003.0005.
Full textKachelriess, Michael. Quantum mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198802877.003.0002.
Full textDeruelle, Nathalie, and Jean-Philippe Uzan. Hamiltonian mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0009.
Full textDeruelle, Nathalie, and Jean-Philippe Uzan. The law of gravitation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0011.
Full textMann, Peter. Near-Integrable Systems. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0024.
Full textNolte, David D. Introduction to Modern Dynamics. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198844624.001.0001.
Full text