Academic literature on the topic 'Lake Hydrodynamic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lake Hydrodynamic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Lake Hydrodynamic"

1

Setegn, Shimelis Gebriye. "Modelling Hydrological and Hydrodynamic Processes in Lake Tana Basin, Ethiopia." Doctoral thesis, KTH, Vattendragsteknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12024.

Full text
Abstract:
Lake Tana Basin is of significant importance to Ethiopia concerning water resources aspects and the ecological balance of the area. The growing high demands in utilizing the high potentials of water resource of the Lake to its maximal limit, pictures a disturbing future for the Lake. The objective of this study was to assess the influence of topography, soil, land use and climatic varia-bility on the hydrological and hydrodynamic processes of the Lake Tana Basin. The physically based SWAT model was successfully calibrated and validated for flow and sediment yield. Se-quential uncertainty fitting (SUFI-2), parameter solution (ParaSol) and generalized likelihood un-certainty estimation (GLUE) calibration and uncertainty analysis methods were compared and used for the set-up of the SWAT model. There is a good agreement between the measured and simulated flows and sediment yields. SWAT and GIS based decision support system that uses multi-criteria evaluation (MCE) was used to identify the most vulnerable areas to soil erosion in the basin. The results indicated that 12 to 30.5% of the watershed is high erosion potential. Pro-jected changes in precipitation and temperature in the basin for two seasons were analyzed using outputs from fifteen global climate models (GCMs). A historical-modification procedure was used to downscale large scale outputs from GCM models to watershed-scale climate data. The results showed significant changes in streamflow and other hydrological parameters in the period between 2045-2100. SWAT was combined with a three dimensional hydrodynamic model, GEMSS to investigate the flow structure, stratification, the flushing time, lake water balance and finally the Lake‘s water level response to planned water removal. We have found an alarming and dramatic fall of the water levels in Lake Tana as response to the planned water withdrawal. The combination of the two models can be used as a decision support tools to better understand and manage land and water resources in watersheds and waterbodies. The study showed that the Lake Tana Basin may experience a negative change in water balance in the forthcoming decades due to climate change as well as over abstraction of water resources.<br>QC 20100720
APA, Harvard, Vancouver, ISO, and other styles
2

Soetanto, Budi, and soetanto@gmail com. "EVALUATION OF SEDIMENTATION PROCESSES IN A COASTAL LAKE: CAUSEWAY LAKE, THE CAPRICORN COAST CASE STUDY." Central Queensland University. Engineering, 2007. http://library-resources.cqu.edu.au./thesis/adt-QCQU/public/adt-QCQU20070622.122252.

Full text
Abstract:
This thesis presents analysis of the hydrodynamic and sedimentation changes of the Causeway Lake, Queensland. It was created in 1939 when a causeway and bridge construction was built across the estuary entrance. Since the construction, significant sediment retention has occurred in the lake. The sediment study presented in this thesis was undertaken based on historical data, field data measurement and numerical modelling, supported by theoretical analysis. Based on bathymetry data for the period from 1986 and 2003, an average of 2500 m3/year of sediment has settled in the estuary. To verify the sources of sedimentation, field measurements were undertaken at selected sections at two upstream boundaries (Mulambin and Shoal Creeks), and at the downstream boundary under the bridge. Four sets of field measurements with tidal elevation up to 4.5 m (0.8 m above the bridge sill) were analysed. Results showed that sediment transport in from the sea side was about 1050 m3/year and from the catchments area was in the order of 1100 m3/year (wash load was not included). Implementation of numerical modelling using RMA required calibration using field data. The predicted sediment transport was in order of 2900 m3/year. The calibrated model was used to simulate the sedimentation pattern for the next 10 years. Four scenarios were analysed, and the resulting recommendation was to dredge out about 141,000 m3 sediment from the Mulambin Creek branch area. Other solutions were also suggested: improvement of lake management and possibility to raise the sill level (water gate).
APA, Harvard, Vancouver, ISO, and other styles
3

McCulloch, Andrew John. "Developing and Calibrating the Hydrodynamic and Water Quality Model CE-QUAL-W2 for Banks Lake Washington." PDXScholar, 2011. https://pdxscholar.library.pdx.edu/open_access_etds/180.

Full text
Abstract:
Located in central Washington State, Banks Lake serves as an irrigation storage reservoir for the Columbia Basin Irrigation Project and is home to a diverse fisheries population. The current hydrologic management strategies used for Banks Lake have been chosen to serve two purposes: to adequately store and provide irrigation water for the Columbia Basin Irrigation Project and to maintain a healthy aquatic environment suitable for the growth and habitation of local flora and fauna. Increased needs for irrigation water within arid central Washington poses additional challenges to reservoir managers so that irrigation needs are met without damaging the present aquatic environment within Banks Lake. Future plans by the Washington Department of Ecology to use Banks Lake storage to replenish ground water reserves of the Odessa Subarea aquifer have required an investigation into how increased seasonal drawdown may affect fish growth, fish habitat and overall limnology of Banks Lake. The goal of this project is to produce a hydrodynamic and water quality model of Banks Lake that can predict the impacts of management strategies on the lake's water quality and the linkage of lake management to fish habitat.
APA, Harvard, Vancouver, ISO, and other styles
4

Paul, Seema. "Data preparation, hydrodynamic and contaminant transport shallow-water simulations of Lake Victoria." Licentiate thesis, KTH, Vatten- och miljöteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263593.

Full text
Abstract:
This study explores shallow lake numerical hydrodynamic processes that support model development and validation, extreme events and effects of water circulation in Lake Victoria. Lake Victoria is the second largest freshwater lake in the world, and the largest in East Africa. It is the major freshwater reservoir and source for domestic, agriculture, industrial, fishery, and transport. The resources support livelihoods and ecosystem services for over 40 million people. The lake is severely affected by water quality degradation by pollution. This thesis aims at improving the understanding by following recommendation of the Lake Victoria Environment Management Project, Lake Victoria Basin Commission climate change adaptation strategy and action plan 2018-2023, Lake Victoria Basin Commission operational plan 2015-2020, and Lake Victoria Basin Commission report. These reports suggested detailed lake bathymetry survey, modelling of lake flow, study of lake hydrometeorological processes by modelling and simulation, to identify extreme weather events, assess water circulation effect, and study lake pollution near the shore. A numerical hydrodynamic model was built in the COMSOL Multiphysics (CM) software for assessing lake flows and water turn-over from river inflows which carry pollution. The work included the development of systematic methods for lake bathymetry that are relevant for lake numerical and hydrodynamic modelling. The hydrometeorological driven simulation model was employed to assess lake water balance, water circulation and soluble transport. Paper 1 creates a bathymetry from several methods and from several data sources, and a vertically integrated free surface flow model was implemented in CM. The model was used to investigate outflow conditions, mean velocities driven by river inflow, outflow, precipitation and evaporation. It is shown to be exactly conservative and give water level variation in reasonable agreement with measurements. The results indicate that the shallow water model is close to linear. An outflow model, linear in water level, predicts water level reasonable agreement with measurements. The findings suggest that the model should consider wind stress driven flow to provide more accurate lake flow behavior. Paper 2 performed an assessment of the hydro-meteorological processes and extreme weather events that are responsible for changing the characteristics of lake water balance, and changing streamflow variations, and lake transportation. We compare historical data over a long time with data from the model including water balance, sources of data uncertainty, correlations, extreme rain and inflow years, and seasonal variations. Solute loading and transportation was illustrated by tracing the water from the river inflows. The results indicate that the lake rainfall has a strong seasonal variation with strong correlations between tributary inflows and precipitation, and between lake outflow and water level. The tracer transport by mean flow is very slow. Flow increases somewhat in wet periods and is faster in the shallow Kenya lake zone than in the deeper Uganda and Tanzanian lake zones, where the major inflow, from the Kagera River, appears to strongly influence transportation.<br>Denna studie undersöker med numerisk metodik hydrodynamiska processer i den mycket grundaVictoriasjön och hur de påverkas av extrem väderlek, inflöden, och nederbörd. Victoriasjön är denandra största sötvattensjön i världen, och den största i Afrika. Den är färskvattenförråd och källa förhushåll, jordbruk, industri, fiske och transporter. Resurserna ger livsuppehåll och ekosystemtjänsterför mer än 40 miljoner människor. Sjön är utsatt för allvarliga föroreningar som försämrarvattenkvaliteten. Detta arbete avser att förbättra förståelsen genom att följa rekommendationer somgivits ut av Lake Victoria Environment Management Project (LVEMP), och Lake Victoria BasinCommissions (LVBC) rapporter om strategi för anpassning till klimatförändringar, åtgärdsplan2018-2023 och översiktsplan 2015-2020. Rapporterna föreslår detaljerad genomgång avdjupkartor, modellering av strömning i sjön i syfte att identifiera extrema väderhändelser,undersöka vattencirkulationen, och studera föroreningarna nära stränder. En hydrodynamisknumerisk modell har byggts i simuleringspaketet COMSOL Multiphysics (CM) för uppskattning avströmning och vattenutbyte från förorenade inflöden. Arbetet innefattade utveckling av metoder förvattendjups-modeller för hydrodynamiska studier. Simuleringsmodellen drivs avhydrometeorologiska data och används för vattenmängds-balans, cirkulation ochföroreningstransport.Artikel 1 skapar vattendjupskartan från flera data-mängder med olika metoder. En vertikaltintegrerad modell med fri yta implementerades i CM. Modellen ger vertikalt medelvärdesbildadehastigheter drivna av flodinflöden, utflöde, nederbörd och avdunstning. Modellen representerarvattenbalansen exakt och ger variationer i vattennivå i rimlig överensstämmelse med mätningar.Resultaten antyder att modellen är nära linjär och tids-invariant. En utflödesmodell ansatt somlinjär i vatten-nivån kan anpassas noggrant till historiska data. Bättre realism kan uppnås omvindens pådrivande verkan inkluderas.Artikel 2 går igenom de hydro-meteorologiska processer och extrema väder-händelser som ändrarvattenbalans, strömningsmönster och transport. Vi har jämfört data över femtio år med modellens,inkluderande vattennivå, källor för osäkerhet i data, korrelationer, år med extrema regn ochinflöden, och årstidsvariationer. Resultaten tyder på att nederbörden varierar kraftigt medårstiderna, och signifikanta korrelationer ses mellan nederbörd och inflöden, och mellan utflöde ochvattennivå.Transport av lösliga föroreningar illustrerades genom spårning av vatten från de olika inflödena.Spårämnestransport med vertikalt medelvärdesbildade hastigheter är mycket långsam.Strömningen ökar något i våta årstider och är snabbare i den grunda zonen i Kenya än i de djuparedelarna i Uganda och Tanzania. Det största inflödet som kommer från Kagera tycks ha stor inverkanpå transporten.<br><p>QC 20191106</p>
APA, Harvard, Vancouver, ISO, and other styles
5

Chilmakui, Chandra Sekhar. "Sediment Transport and Pathogen Indicator Modeling in Lake Pontchartrain." ScholarWorks@UNO, 2006. http://scholarworks.uno.edu/td/326.

Full text
Abstract:
A nested three dimensional numerical modeling application was developed to determine the fate of pathogen indicators in Lake Pontchartrain discharged from its tributaries. To accomplish this, Estuarine, coastal and ocean model with sediment (ECOMSED) was implemented to simulate various processes that would determine the fate and transport of fecal coliform bacteria in the lake. The processes included hydrodynamics, waves, sediment transport, and the decay and transport of the fecal coliforms. Wind and tidal effects were accounted along with the freshwater inflows. All the components of the modeling application were calibrated and validated using measured data sets. Field measurements of the conventional water quality parameters and fecal coliform levels were used to calibrate and validate the pathogen indicator transport. The decay of the fecal coliforms was based on the literature and laboratory tests. The sediment transport module was calibrated based on the satellite reflectance data in the lake. The north shore near-field model indicated that the fecal coliform plume can be highly dynamic and sporadic depending on the wind and tide conditions. It also showed that the period of impact due to a storm event on the fecal coliform levels in the lake can be anywhere from 1.5 days for a typical summer event to 4 days for an extreme winter event. The model studies showed that the zone of impact of the stormwater from the river was limited to a few hundred meters from the river mouth. Finally, the modeling framework developed for the north shore was successfully applied to the south shore of Lake Pontchartrain to simulate fate and transport of fecal coliforms discharged through the urban stormwater outfalls.
APA, Harvard, Vancouver, ISO, and other styles
6

Boegman, Leon. "Application of a two-dimensional hydrodynamic and water quality model to Lake Erie." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0005/MQ46066.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ischen, Marc. "Using Two-Dimensional Numerical Models to Analyze Hydraulic Effects of Constricted Flows through the Rigolets Pass between Lake Pontchartrain and Lake Borgne." ScholarWorks@UNO, 2009. http://scholarworks.uno.edu/td/922.

Full text
Abstract:
The objective of this study was to determine if numerical models commonly used for large scale applications could also be used to model flow through flood control structures in the Rigolets Pass between Lake Borgne and Lake Pontchartrain. For this purpose a small scale physical model was built. It showed that bi-stable flow can develop downstream of a constriction. Small changes in the distribution of the approaching flow significantly impacted flows downstream of the constriction. This behavior could not be properly reproduced by a small scale 2-dimensional RMA2 model of identical dimensions. A large scale RMA2 model of the Rigolets testing possible locations and geometries of flood control structures showed that this pass is very sensitive to variations in the cross sectional flow area. Even minor reductions can significantly increase headlosses and velocities. To reduce negative impacts a flood control structure should be built in a wide and shallow area of the pass.
APA, Harvard, Vancouver, ISO, and other styles
8

Dusini, Douglas S. "The effect of Lake Erie water level variation on sediment resuspension." Connect to this title online, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1112041317.

Full text
Abstract:
Thesis (M.S.)--Ohio State University, 2005.<br>Document formatted into pages; contains x, 80 p.; also includes graphics (some col.). Includes abstract and vita. Includes bibliographical references (p. 78-80). Available online via OhioLINK's ETD Center.
APA, Harvard, Vancouver, ISO, and other styles
9

Hornung, Ralf. "Numerical modelling of stratification in Lake Constance with the 1-D hydrodynamic model DYRESM." [S.l. : s.n.], 2002. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10361133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Roskosch, Andrea. "The influence of macrozoobenthos in lake sediments on hydrodynamic transport processes and biogeochemical impacts." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2011. http://dx.doi.org/10.18452/16423.

Full text
Abstract:
Ziel dieser Dissertation ist, Wissensdefizite im Bereich der Bioirrigation von Süßwassersedimenten abzubauen. Als Untersuchungsorganismus wurde Chironomus plumosus ausgewählt weil diese weit verbreitete Larve ihre U-förmigen Röhren mit Überstandswasser durchspült und so Nahrung aus dem Wasser filtriert. Um Bioirrigation in Wohnröhren mit einem Durchmesser von ca. 1,7 mm zu untersuchen, wurden geeignete Messmethoden entwickelt, mit denen für das 4. Larvenstadium die Parameter Fließgeschwindigkeit (14,9 mm/s), Pumpzeit (33 min/h) und Pumprate (61 ml/h) gemessen wurden. Bei einer Populationsdichte von 745 Larven/m2 kann somit ein Wasservolumen äquivalent zum Volumen des Müggelsee in Berlin, innerhalb von 5 Tagen durch das Sediment gepumpt werden. Die Positronen-Emissions-Tomographie wurde für die Sedimentanalytik adaptiert und der Transport im Porenwasser analysiert. Mit den Untersuchungen wure gezeigt, dass auch in schlammigen Seesedimenten ein advektiver Transport durch Bioirrigation verursacht wird, der nicht zu vernachlässigen ist. Steigende Temperaturen resultieren aufgrund steigender Fließgeschwindigkeit in einen signifikanten Anstieg der Pumprate sowie der Eintragsrate von Überstandswasser ins Sediment. Ein abfallender Sauerstoffgehalt verlängert die Pumpzeit und führt zu einer sinkenden Fließgeschwindigkeit. Außerdem wird aus den Untersuchungen eine jahreszeitliche Variabilität der Bioirrigation sichtbar, welche unabhängig von konstanten Laborbedingungen auftritt. Mit dem Wasserstrom werden Porenwasserspezies wie SRP in den Wasserkörper abtransportiert, wohingegen SO42- und O2 aus dem Überstandswasser in das Sediment eingetragen werden. Ferner kommt es zur Oxidation von Fe2+ infolgedessen Phosphat im Sediment festgelegt wird, wie mittels P-Fraktionierung gezeigt werden konnte. Mikrobiologische Untersuchungen zeigten, dass Bioirrigation die mikrobielle Abundanz steigert, die Bakteriengemeinschaft verändert und das Potential zur enzymatischen Hydrolyse erhöht.<br>The aim of this thesis is to fill gaps of knowledge regarding bioirrigation in freshwater sediments. Chironomus plumosus was chosen for the investigations since the filter-feeding larva dwelling in U-shaped burrows is quite common and flushes its burrow with water from the overlying water body. To investigate bioirrigation activity in burrows of approximately 1.7 mm in diameter appropriate measurement techniques were developed. With the methods several parameters were measured for 4th stage of larvae: flow velocity (14.9 mm s-1), pumping time (33 min h-1), and pumping rate (61 ml h-1). Consequently, a water volume equivalent to the volume of Lake Müggelsee in Berlin is pumped through the sediment every 5 days by a population density of 745 larvae m-2. The nuclear medicine imaging technique Positron Emissions Tomography was adapted and used to analyze the transport in the sediment pore water. By means of the experiments, it could be shown that even in muddy lake sediments advection is a relevant transport process and should not be neglected. Rising temperatures result in increased pumping rates and increased influx rates of surface water into the sediment due to increased flow velocities in the burrows. Dropping oxygen concentrations prolong the pumping duration while the flow velocity decreases. Furthermore, experiments show a seasonal variability of bioirrigation which is independent of constant laboratory conditions. Pore water species such as SRP are transported with the water flow into the overlying water body, whereas SO42- and O2 are transported from the overlying water into the sediment. Due to the oxidation of Fe2+, phosphorus is fixed into the sediment, a result confirmed by P-fractionation. Microbiological investigations of the burrow walls demonstrated that the bioirrigation activity enhances the microbial abundance, changes the community structure, and increases the potential of enzymatic hydrolysis.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography