Journal articles on the topic 'Laminar flow. Non-Newtonian fluids. Turbulence'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Laminar flow. Non-Newtonian fluids. Turbulence.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Nouri, J. M., and J. H. Whitelaw. "Flow of Newtonian and Non-Newtonian Fluids in a Concentric Annulus With Rotation of the Inner Cylinder." Journal of Fluids Engineering 116, no. 4 (1994): 821–27. http://dx.doi.org/10.1115/1.2911856.
Full textSui, Dan, and Juan Carlos Martinez Vidaur. "Automated Characterization of Non-Newtonian Fluids Using Laboratory Setup." Applied Rheology 30, no. 1 (2020): 39–53. http://dx.doi.org/10.1515/arh-2020-0101.
Full textFORBES, LAWRENCE K. "ON TURBULENCE MODELLING AND THE TRANSITION FROM LAMINAR TO TURBULENT FLOW." ANZIAM Journal 56, no. 1 (2014): 28–47. http://dx.doi.org/10.1017/s1446181114000224.
Full textDRAAD, A. A., G. D. C. KUIKEN, and F. T. M. NIEUWSTADT. "Laminar–turbulent transition in pipe flow for Newtonian and non-Newtonian fluids." Journal of Fluid Mechanics 377 (December 25, 1998): 267–312. http://dx.doi.org/10.1017/s0022112098003139.
Full textGÜZEL, B., T. BURGHELEA, I. A. FRIGAARD, and D. M. MARTINEZ. "Observation of laminar–turbulent transition of a yield stress fluid in Hagen–Poiseuille flow." Journal of Fluid Mechanics 627 (May 25, 2009): 97–128. http://dx.doi.org/10.1017/s0022112009005813.
Full textDebnath, Suman, Tarun Kanti Bandyopadhyay, and Apu Kumar Saha. "CFD Analysis of Non-Newtonian Pseudo Plastic Liquid Flow through Bends." Periodica Polytechnica Mechanical Engineering 61, no. 3 (2017): 184. http://dx.doi.org/10.3311/ppme.9494.
Full textPlaut, Emmanuel, Nicolas Roland, and Chérif Nouar. "Nonlinear waves with a threefold rotational symmetry in pipe flow: influence of a strongly shear-thinning rheology." Journal of Fluid Mechanics 818 (April 5, 2017): 595–622. http://dx.doi.org/10.1017/jfm.2017.149.
Full textLIU, R., and Q. S. LIU. "Non-modal instability in plane Couette flow of a power-law fluid." Journal of Fluid Mechanics 676 (April 26, 2011): 145–71. http://dx.doi.org/10.1017/jfm.2011.36.
Full textJovanović, J., M. Pashtrapanska, B. Frohnapfel, F. Durst, J. Koskinen, and K. Koskinen. "On the Mechanism Responsible for Turbulent Drag Reduction by Dilute Addition of High Polymers: Theory, Experiments, Simulations, and Predictions." Journal of Fluids Engineering 128, no. 1 (2005): 118–30. http://dx.doi.org/10.1115/1.2073227.
Full textZhou, Yunxu, and Subhash Nandlal Shah. "Theoretical Analysis of Turbulent Flow of Power-Law Fluids in Coiled Tubing." SPE Journal 12, no. 04 (2007): 447–57. http://dx.doi.org/10.2118/84123-pa.
Full textGüzel, B., I. Frigaard, and D. M. Martinez. "Predicting laminar–turbulent transition in Poiseuille pipe flow for non-Newtonian fluids." Chemical Engineering Science 64, no. 2 (2009): 254–64. http://dx.doi.org/10.1016/j.ces.2008.10.011.
Full textMu¨ller, A. J., A. E. Saez, J. P. Tatham, and J. A. Odell. "Effect of Polymeric Additives on Turbulent Flow in Opposed Jets." Applied Mechanics Reviews 48, no. 11S (1995): S216—S221. http://dx.doi.org/10.1115/1.3005075.
Full textBrkić, Dejan, and Pavel Praks. "Unified Friction Formulation from Laminar to Fully Rough Turbulent Flow." Applied Sciences 8, no. 11 (2018): 2036. http://dx.doi.org/10.3390/app8112036.
Full textJovanovic, Jovan, Bettina Frohnapfel, Mira Pashtrapanska, and Franz Durst. "The effect of polymers on the dynamics of turbulence in a drag reduced flow." Thermal Science 9, no. 1 (2005): 13–41. http://dx.doi.org/10.2298/tsci0501013j.
Full textProff, Erwin A., and Jürgen H. Lohmann. "Calculation of pressure drop in the tube flow of sewage sludges with the aid of flow curves." Water Science and Technology 36, no. 11 (1997): 27–32. http://dx.doi.org/10.2166/wst.1997.0390.
Full textFoolad, Yasaman, Majid Bizhani, and Ian A. Frigaard. "A Comparative Study of Laminar-Turbulent Displacement in an Eccentric Annulus under Imposed Flow Rate and Imposed Pressure Drop Conditions." Energies 14, no. 6 (2021): 1654. http://dx.doi.org/10.3390/en14061654.
Full textDuda, Daniel, Marek Klimko, Radek Škach, Jan Uher, and Václav Uruba. "Hydrodynamic education with rheoscopic fluid." EPJ Web of Conferences 213 (2019): 02014. http://dx.doi.org/10.1051/epjconf/201921302014.
Full textPawar, S. S., and Vivek K. Sunnapwar. "Experimental studies on heat transfer to Newtonian and non-Newtonian fluids in helical coils with laminar and turbulent flow." Experimental Thermal and Fluid Science 44 (January 2013): 792–804. http://dx.doi.org/10.1016/j.expthermflusci.2012.09.024.
Full textKhan, Aamir, Rehan Ali Shah, M. Kamran Alam, et al. "Flow dynamics of a time-dependent non-Newtonian and non-isothermal fluid between coaxial squeezing disks." Advances in Mechanical Engineering 13, no. 7 (2021): 168781402110333. http://dx.doi.org/10.1177/16878140211033370.
Full textBurger, J. H., R. Haldenwang, and N. J. Alderman. "Laminar and Turbulent Flow of Non-Newtonian Fluids in Open Channels for Different Cross-Sectional Shapes." Journal of Hydraulic Engineering 141, no. 4 (2015): 04014084. http://dx.doi.org/10.1061/(asce)hy.1943-7900.0000968.
Full textJha, Narsing K., and Victor Steinberg. "Elastically driven Kelvin–Helmholtz-like instability in straight channel flow." Proceedings of the National Academy of Sciences 118, no. 34 (2021): e2105211118. http://dx.doi.org/10.1073/pnas.2105211118.
Full textKelly, Nathaniel S., Harinderjit S. Gill, Andrew N. Cookson, and Katharine H. Fraser. "Influence of Shear-Thinning Blood Rheology on the Laminar-Turbulent Transition over a Backward Facing Step." Fluids 5, no. 2 (2020): 57. http://dx.doi.org/10.3390/fluids5020057.
Full textBoussaha, Bilal, Mustapha Lahmar, Benyebka Bou-Said, and Hamid Boucherit. "Non-Newtonian couple-stress squeeze film behaviour between oscillating anisotropic porous circular discs with sealed boundary." Mechanics & Industry 21, no. 3 (2020): 311. http://dx.doi.org/10.1051/meca/2020004.
Full textAmeur, Houari. "Investigation of the Performance of V-cut Turbines for Stirring Shear-thinning Fluids in a Cylindrical Vessel." Periodica Polytechnica Mechanical Engineering 64, no. 3 (2020): 207–11. http://dx.doi.org/10.3311/ppme.13359.
Full textMehta, Dhruv, Adithya Thota Radhakrishnan, Jules van Lier, and Francois Clemens. "Sensitivity Analysis of a Wall Boundary Condition for the Turbulent Pipe Flow of Herschel–Bulkley Fluids." Water 11, no. 1 (2018): 19. http://dx.doi.org/10.3390/w11010019.
Full textCsizmadia, Péter, and Sára Till. "The Effect of Rheology Model of an Activated Sludge on to the Predicted Losses by an Elbow." Periodica Polytechnica Mechanical Engineering 62, no. 4 (2018): 305–11. http://dx.doi.org/10.3311/ppme.12348.
Full textParekh, Siddharth, Ali Pilehvari, and Robert Serth. "Prediction of Fluid Behavior Using Generalized Hydraulic Calculation Method in Hydraulic Fractures." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 81, no. 1 (2021): 120–30. http://dx.doi.org/10.37934/arfmts.81.1.120130.
Full textKostic, M. "On turbulent drag and heat transfer reduction phenomena and laminar heat transfer enhancement in non-circular duct flow of certain non-Newtonian fluids." International Journal of Heat and Mass Transfer 37 (March 1994): 133–47. http://dx.doi.org/10.1016/0017-9310(94)90017-5.
Full textSpeziale, Charles G. "A Review of Material Frame-Indifference in Mechanics." Applied Mechanics Reviews 51, no. 8 (1998): 489–504. http://dx.doi.org/10.1115/1.3099017.
Full textAGARWAL, SATISH, ANKUSH AGGARWAL, SUNANDO DASGUPTA, and SIRSHENDU DE. "PERFORMANCE PREDICTION OF MEMBRANE MODULES INCORPORATING THE EFFECTS OF SUCTION IN THE MASS TRANSFER COEFFICIENT UNDER LAMINAR AND TURBULENT FLOW CONDITIONS FOR NON-NEWTONIAN FLUIDS." Journal of Food Process Engineering 32, no. 5 (2009): 752–74. http://dx.doi.org/10.1111/j.1745-4530.2008.00243.x.
Full textOruganti, Surya Kaundinya, Guillaume Millet, and Mikhael Gorokhovski. "Assessment of LES-STRIP approach for modeling of droplet dispersion in diesel-like sprays." Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 74 (2019): 60. http://dx.doi.org/10.2516/ogst/2019025.
Full textÓ Náraigh, Lennon, Prashant Valluri, David M. Scott, Iain Bethune, and Peter D. M. Spelt. "Linear instability, nonlinear instability and ligament dynamics in three-dimensional laminar two-layer liquid–liquid flows." Journal of Fluid Mechanics 750 (June 10, 2014): 464–506. http://dx.doi.org/10.1017/jfm.2014.274.
Full textPereira, Anselmo S., Roney L. Thompson, and Gilmar Mompean. "Common features between the Newtonian laminar–turbulent transition and the viscoelastic drag-reducing turbulence." Journal of Fluid Mechanics 877 (August 27, 2019): 405–28. http://dx.doi.org/10.1017/jfm.2019.567.
Full textPark, J. T., R. J. Mannheimer, T. A. Grimley, and T. B. Morrow. "Pipe Flow Measurements of a Transparent Non-Newtonian Slurry." Journal of Fluids Engineering 111, no. 3 (1989): 331–36. http://dx.doi.org/10.1115/1.3243648.
Full textYANG, SHU-QING, and G. DOU. "Turbulent drag reduction with polymer additive in rough pipes." Journal of Fluid Mechanics 642 (December 11, 2009): 279–94. http://dx.doi.org/10.1017/s002211200999187x.
Full textBrunetie`re, Noe¨l, Bernard Tournerie, and Jean Fre^ne. "Influence of Fluid Flow Regime on Performances of Non-Contacting Liquid Face Seals." Journal of Tribology 124, no. 3 (2002): 515–23. http://dx.doi.org/10.1115/1.1456453.
Full textRosti, Marco E., Daulet Izbassarov, Outi Tammisola, Sarah Hormozi, and Luca Brandt. "Turbulent channel flow of an elastoviscoplastic fluid." Journal of Fluid Mechanics 853 (August 23, 2018): 488–514. http://dx.doi.org/10.1017/jfm.2018.591.
Full textFayed, Hassan E., Nadeem A. Sheikh, and Oleg Iliev. "On Laminar Flow of Non-Newtonian Fluids in Porous Media." Transport in Porous Media 111, no. 1 (2015): 253–64. http://dx.doi.org/10.1007/s11242-015-0592-8.
Full textEshtiaghi, Nicky, Flora Markis, and Paul Slatter. "The laminar/turbulent transition in a sludge pipeline." Water Science and Technology 65, no. 4 (2012): 697–702. http://dx.doi.org/10.2166/wst.2012.893.
Full textHaciislamoglu, M., and J. Langlinais. "Non-Newtonian Flow in Eccentric Annuli." Journal of Energy Resources Technology 112, no. 3 (1990): 163–69. http://dx.doi.org/10.1115/1.2905753.
Full textMcNeil, D. A., A. J. Addlesee, and A. Stuart. "Newtonian and non-Newtonian viscous flows in nozzles." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 214, no. 11 (2000): 1425–36. http://dx.doi.org/10.1243/0954406001523399.
Full textHelal, Mohamed M., Tamer M. Ahmed, Adel A. Banawan, and Mohamed A. Kotb. "Numerical prediction of the performance of marine propellers using computational fluid dynamics simulation with transition-sensitive turbulence model." Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 233, no. 2 (2018): 515–27. http://dx.doi.org/10.1177/1475090218763199.
Full textArafin, Sayyadul, and S. M. Mujibur Rahman. "Dynamical Properties of Omani Crude Oils for Flow Through a Vertical Annulus and a Cylindrical Pipe." Sultan Qaboos University Journal for Science [SQUJS] 16 (December 1, 2011): 102. http://dx.doi.org/10.24200/squjs.vol16iss0pp102-117.
Full textTAKAMI, Toshihiro, Kouzou SUDOU, and Yukio TOMITA. "Flow of Non-Newtonian Fluids in Curved Pipes : Laminar Flow in Entrance Region." JSME international journal. Ser. 2, Fluids engineering, heat transfer, power, combustion, thermophysical properties 33, no. 1 (1990): 26–32. http://dx.doi.org/10.1299/jsmeb1988.33.1_26.
Full textAadnøy, Bernt S., and Jarle M. Ravnøy. "Improved pressure drop/flow rate equation for non-Newtonian fluids in laminar flow." Journal of Petroleum Science and Engineering 11, no. 3 (1994): 261–66. http://dx.doi.org/10.1016/0920-4105(94)90045-0.
Full textNag, Debabrata, and Amitava Datta. "Variation of the Recirculation Length of Newtonian and Non-Newtonian Power-Law Fluids in Laminar Flow Through a Suddenly Expanded Axisymmetric Geometry." Journal of Fluids Engineering 129, no. 2 (2006): 245–50. http://dx.doi.org/10.1115/1.2409361.
Full textLitvinov, W. G. "Model for laminar and turbulent flows of viscous and nonlinear viscous non-Newtonian fluids." Journal of Mathematical Physics 52, no. 5 (2011): 053102. http://dx.doi.org/10.1063/1.3578752.
Full textWatanabe, Keizo, and Takashi Akino. "Drag Reduction in Laminar Flow Between Two Vertical Coaxial Cylinders." Journal of Fluids Engineering 121, no. 3 (1999): 541–47. http://dx.doi.org/10.1115/1.2823502.
Full textChaves, C. L., Joao N. N. Quaresma, E. N. Macedo, L. M. Pereira, and J. A. Lima. "HYDRODYNAMICALLY DEVELOPED LAMINAR FLOW OF NON-NEWTONIAN FLUIDS INSIDE DOUBLE-SINE DUCTS." Hybrid Methods in Engineering 3, no. 2-3 (2001): 16. http://dx.doi.org/10.1615/hybmetheng.v3.i2-3.60.
Full textNaccache, Mônica F., and Paulo R. Souza Mendes. "Heat transfer to non-Newtonian fluids in laminar flow through rectangular ducts." International Journal of Heat and Fluid Flow 17, no. 6 (1996): 613–20. http://dx.doi.org/10.1016/s0142-727x(96)00062-8.
Full text