Academic literature on the topic 'Laminar layer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Laminar layer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Laminar layer"
Forster, E., C. Kaltschmidt, J. Deng, H. Cremer, T. Deller, and M. Frotscher. "Lamina-specific cell adhesion on living slices of hippocampus." Development 125, no. 17 (September 1, 1998): 3399–410. http://dx.doi.org/10.1242/dev.125.17.3399.
Full textGiepman, R. H. M., F. F. J. Schrijer, and B. W. van Oudheusden. "A parametric study of laminar and transitional oblique shock wave reflections." Journal of Fluid Mechanics 844 (April 4, 2018): 187–215. http://dx.doi.org/10.1017/jfm.2018.165.
Full textAtencio, Craig A., and Christoph E. Schreiner. "Laminar Diversity of Dynamic Sound Processing in Cat Primary Auditory Cortex." Journal of Neurophysiology 103, no. 1 (January 2010): 192–205. http://dx.doi.org/10.1152/jn.00624.2009.
Full textDjenidi, L., F. Anselmet, J. Liandrat, and L. Fulachier. "Laminar boundary layer over riblets." Physics of Fluids 6, no. 9 (September 1994): 2993–99. http://dx.doi.org/10.1063/1.868429.
Full textAnderson, E. J., W. R. McGillis, and M. A. Grosenbaugh. "The boundary layer of swimming fish." Journal of Experimental Biology 204, no. 1 (January 1, 2001): 81–102. http://dx.doi.org/10.1242/jeb.204.1.81.
Full textZhang, Jiaojiao, Shengna Liu, and Liancun Zheng. "Turbulent boundary layer heat transfer of CuO–water nanofluids on a continuously moving plate subject to convective boundary." Zeitschrift für Naturforschung A 77, no. 4 (December 21, 2021): 369–77. http://dx.doi.org/10.1515/zna-2021-0268.
Full textRaić, Karlo. "Simplification of laminar boundary layer equations." Metallurgical and Materials Engineering 24, no. 2 (July 2, 2018): 93–102. http://dx.doi.org/10.30544/347.
Full textAlston, Thomas M., and Ira M. Cohen. "Decay of a laminar shear layer." Physics of Fluids A: Fluid Dynamics 4, no. 12 (December 1992): 2690–99. http://dx.doi.org/10.1063/1.858456.
Full textQiu, Jinhao, Junji Tani, Toshiyuki Hayase, and Takashi Okutani. "Active control of laminar boundary layer." Matériaux & Techniques 90 (2002): 13–17. http://dx.doi.org/10.1051/mattech/200290120013s.
Full textKuz’min, A. I., and S. S. Kharchenko. "Self ignition in laminar mixing layer." Combustion, Explosion, and Shock Waves 35, no. 1 (January 1999): 23–30. http://dx.doi.org/10.1007/bf02674382.
Full textDissertations / Theses on the topic "Laminar layer"
Bown, Nicholas William. "In-flight boundary layer studies on laminar flow nacelles." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299777.
Full textChoudhari, Meelan. "Boundary layer receptivity mechanisms relevant to laminar flow control." Diss., The University of Arizona, 1990. http://hdl.handle.net/10150/184964.
Full textMackerrell, O. S. "Some hydrodynamic instabilities of boundary layer flows." Thesis, University of Exeter, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381355.
Full textRogers, John B. "Numerical computations for laminar mixing layers between parallel supersonic streams." Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/16441.
Full textChoudhari, Meelan 1963. "Boundary layer receptivity at a suction surface-hard wall junction." Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/277030.
Full textFabbiane, Nicolò. "Adaptive and model-based control in laminar boundary-layer flows." Licentiate thesis, KTH, Mekanik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-154052.
Full textI det tunna gränsskikt som uppstår en yta, kan friktionen minskas genom att förhindra omslag från ett laminärt till ett turbulent flöde. När turbulensnivån är låg i omgivningen, domineras till en början omslaget av lokala instabiliteter (Tollmien-Schlichting (TS) v ågor) som växer i en exponentiell takt samtidigt som de propagerar nedströms. Därför, kan man förskjuta omslaget genom att dämpa TS vågors tillväxt i ett gränsskikt och därmed minska friktionen.Med detta mål i sikte, tillämpas och jämförs två reglertekniska metoder, nämligen en adaptiv signalbaserad metod och en statiskt modellbaserad metod. Vi visar att adaptivitet är av avgörande betydelse för att kunna dämpa TS vågor i en verklig miljö. Den reglertekniska konstruktionen består av val av givare och aktuatorer samt att bestämma det system som behandlar mätsignaler (on- line) för beräkning av en lämplig signal till aktuatorer. Detta system, som kallas för en kompensator, kan vara antingen statisk eller adaptiv, beroende på om det har möjlighet till att anpassa sig till omgivningen. En så kallad linjär regulator (LQG), som representerar den statiska kompensator, har tagits fram med hjälp av numeriska simuleringar of strömningsfältet. Denna kompensator jämförs med en adaptiv regulator som kallas för Filtered-X Least-Mean-Squares (FXLMS) både experimentellt och numeriskt. Det visar sig att LQG regulatorn har en bättre prestanda än FXLMS för de parametrar som den var framtagen för, men brister i robusthet. FXLMS å andra sidan, anpassar sig till icke- modellerade störningar och variationer, och kan därmed hålla en god och jämn prestanda.Man kan därmed dra slutsaten att adaptiva regulatorer är mer lämpliga för att förhala omslaget fr ån laminär till turbulent strömning i situationer då en exakt modell av fysiken saknas.
QC 20141020
Sattarzadeh, Shirvan Sohrab. "Boundary layer streaks as a novel laminar flow control method." Doctoral thesis, KTH, Stabilitet, Transition, Kontroll, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-181899.
Full textQC 20160208
Finnis, M. V. "Centrifugal instability of a laminar boundary layer on a concave surface." Thesis, Cranfield University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332090.
Full textCruz, Erica Jeannette. "Interaction of a Dynamic Vortex Generator with a Laminar Boundary Layer." Thesis, Rensselaer Polytechnic Institute, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10159646.
Full textAn experimental investigation was performed to study the fundamental interaction between a static and dynamic vortex generator with a laminar boundary layer. The effectiveness of static vortex generators (VGs) on delaying boundary layer separation is well established. However, as a passive flow control device, static VGs are associated with a drag penalty since they are always present in the flow. In the current study a piezoelectric-based dynamic vortex generator (DVG) was developed with the goal of mitigating the drag experienced when using a VG as a flow control device and exploring whether or not a DVG was more effective in flow mixing within the boundary layer. Experiments were conducted in a small wind tunnel, where the VG was flush mounted to the floor. The VG was rectangular in shape and erected into the flow with a mean height of the local boundary layer thickness, δ, or hm = 3 mm. The skew angle of the VG was &thetas; = 18° with respect to the incoming flow, oscillated at a driving frequency of f = 40 Hz with a peak to peak displacement (or amplitude) of 0.5·δ, or ha = 1.5 mm. During the experiments, the free stream velocity was held constant at U∞ = 10 m/s. This corresponded to a Reynolds number of Reδ ≈ 2000, which was based on the local boundary layer thickness at the center of the VG. Surface oil flow visualization experiments were performed to obtain qualitative information on the structures present in the flow, while Stereoscopic particle image velocimetry (SPIV) was used to provide quantitative measurements of the 3-D flow field at multiple spanwise planes downstream of the VG under both static and dynamic conditions. Several flow features were detected in the oil flow visualization experiments, including two vortical structures—the main vortex and primary horseshoe vortex—which were confirmed in the SPIV results. The time-averaged flow field showed similar results, though the strength of the vortices appeared less when the VG was actuated. However, phase-averaged data revealed the size, strength, and location of the vortices varied as a function of the actuation cycle, with peaks of vorticity magnitude being greater at certain phases as compared to the static case. The varying flow field associated with the dynamic motion of the DVG showed higher levels of turbulent kinetic energy, therefore confirming enhanced mixing in contrast to the static case.
Bura, Romie Oktovianus. "Laminar/transitional shock-wave/boundary-layer interactions (SWBLIs) in hypersonic flows." Thesis, University of Southampton, 2004. https://eprints.soton.ac.uk/47605/.
Full textBooks on the topic "Laminar layer"
Rogers, David F. Laminar flow analysis. Cambridge: Cambridge University Press, 1992.
Find full textJoslin, Ronald D. Overview of laminar flow control. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Find full text1940-, Rahman M., ed. Laminar and turbulent boundary layers. Southampton: Computational Mechanics Publication, 1997.
Find full textUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Program., ed. Distributed acoustic receptivity in laminar flow control configurations. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1992.
Find full textJoslin, Ronald D. Active control of instabilities in laminar boundary-layer flow. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1994.
Find full textUnited States. National Aeronautics and Space Administration., ed. Parametric study on laminar flow for finite wings at supersonic speeds. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Find full textYa, Levchenko V., Polyakov N. F, and United States. National Aeronautics and Space Administration., eds. Laminar boundary layer with moderate turbulence of the incoming flow. Washington, DC: National Aeronautics and Space Administration, 1989.
Find full textLin, N. Receptivity of the boundary layer on a semi-infinite flat plate with an elliptic leading edge. Tempe, Ariz: Arizona State University, Department of Mechanical and Aerospace Engineering, 1989.
Find full textUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Division., ed. A three-dimensional, compressible laminar boundary-layer method for general fuselages. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Find full textBook chapters on the topic "Laminar layer"
Mauri, Roberto. "Laminar Boundary Layer." In Transport Phenomena in Multiphase Flows, 137–53. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15793-1_8.
Full textBecker, S., K. G. Condie, C. M. Stoots, and D. M. McEligot. "Reynolds stress development in the viscous layer of a transitional boundary layer." In Laminar-Turbulent Transition, 327–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-03997-7_48.
Full textGaudet, L. "Visualisation of Boundary Layer Transition." In Laminar-Turbulent Transition, 699–704. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84103-3_66.
Full textBabu, V. "Laminar Boundary Layer Theory." In Fundamentals of Incompressible Fluid Flow, 91–132. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74656-8_6.
Full textHerwig, H. "Laminar Boundary Layers." In Recent Advances in Boundary Layer Theory, 9–48. Vienna: Springer Vienna, 1998. http://dx.doi.org/10.1007/978-3-7091-2518-2_2.
Full textSmith, Frank T. "Nonlinear Breakdowns in Boundary Layer Transition." In Laminar-Turbulent Transition, 81–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84103-3_6.
Full textArnal, D., F. Vignau, and J. C. Juillen. "Boundary Layer Tripping in Supersonic Flow." In Laminar-Turbulent Transition, 669–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84103-3_62.
Full textLevchenko, V. Ya, and V. A. Scherbakov. "On 3-D Boundary Layer Receptivity." In Laminar-Turbulent Transition, 525–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79765-1_62.
Full textMalik, M. R. "Hypersonic Boundary-Layer Receptivity and Stability." In Laminar-Turbulent Transition, 409–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-03997-7_61.
Full textKumar, Rishi, and Andrew Walton. "Two-Dimensional Self-Sustaining Processes Involving Critical Layer/Wall Layer Interaction." In IUTAM Laminar-Turbulent Transition, 117–26. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67902-6_9.
Full textConference papers on the topic "Laminar layer"
Sanjose, Marlene, Prateek Jaiswal, Stephane Moreau, Aaron Towne, Sanjiva K. Lele, and Adrien Mann. "Laminar boundary layer instability noise." In 23rd AIAA/CEAS Aeroacoustics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-3190.
Full textLowson, Martin, Steven Fiddes, and Emma Nash. "Laminar boundary layer aero-acoustic instabilities." In 32nd Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-358.
Full textCollins, J., D. Goodman, P. Delhaes, and A. P. Lee. "Nanofluidic Channel Engineering Using Laminar Flow Layer-by-Layer Deposition of Polyelectrolytes." In ASME 2004 3rd Integrated Nanosystems Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/nano2004-46073.
Full textAhmadvand, M., A. F. Najafi, and S. Shahidinejad. "Boundary Layer Solution for Laminar Swirling Decay Pipe Flow." In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37375.
Full textKIMMEL, ROGER, and JAMES KENDALL. "Nonlinear disturbances in a hypersonic laminar boundary layer." In 29th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-320.
Full textILINCA, A., and B. BASU. "Prediction of laminar boundary layer using cubic splines." In 10th Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-2702.
Full textRobinet, Jean-Christophe, and P. Joubert de la Motte. "GLOBAL INSTABILITY IN SEPARATED INCOMPRESSIBLE LAMINAR BOUNDARY LAYER." In Third Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2003. http://dx.doi.org/10.1615/tsfp3.510.
Full textLopez, Maurin, and D. K. Walters. "Laminar-to-Turbulent Boundary Layer Prediction Using an Alternative to the Laminar Kinetic Energy Approach." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89433.
Full textPaxson, D. E., and R. E. Mayle. "Laminar Boundary Layer Interaction With an Unsteady Passing Wake." In ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/90-gt-120.
Full textVolchkov, Eduard P., Vladimir V. Lukashov, and Vladimir V. Terekhov. "Investigation of a Laminar Boundary Layer at Hydrogen Combustion." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22509.
Full textReports on the topic "Laminar layer"
Nayfeh, Ali H. Laminar Boundary-Layer Breakdown. Fort Belvoir, VA: Defense Technical Information Center, July 1992. http://dx.doi.org/10.21236/ada254489.
Full textGrossir, Guillaume. On the design of quiet hypersonic wind tunnels. Von Karman Institute for Fluid Dynamics, December 2020. http://dx.doi.org/10.35294/tm57.
Full textBrown, Garry L. An Experimental Study of the Receptivity of a Compressible Laminar Boundary Layer. Fort Belvoir, VA: Defense Technical Information Center, October 2008. http://dx.doi.org/10.21236/ada502767.
Full textDegrez, G., and J. J. Ginoux. Velocity Measurements in a 3D (Three Dimensional) Shock Wave Laminar Boundary Layer Interaction. Fort Belvoir, VA: Defense Technical Information Center, July 1987. http://dx.doi.org/10.21236/ada187334.
Full textGlezer, A., Y. Katz, and I. Wygnanski. On the Breakdown of the Wave Packet Trailing a Turbulent Spot in a Laminar Layer. Fort Belvoir, VA: Defense Technical Information Center, January 1986. http://dx.doi.org/10.21236/ada179607.
Full textBrown, Garry L. An Experimental Study of the Receptivity of a Compressible Laminar Boundary Layer and the Effects on Stability and Receptivity of 2-D and 3-D Pressure Gradients. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada431796.
Full textStetson, Kenneth F. Hypersonic Laminar Boundary Layer Transition. Part 1. Nosetip Bluntness Effects on Cone Frustum Transition. Part 2. Mach 6 Experiments of Transition on a Cone at Angle of Attack. Fort Belvoir, VA: Defense Technical Information Center, December 1986. http://dx.doi.org/10.21236/ada178877.
Full textWang, K. C. Three-Dimensional Laminar Boundary Layers. Fort Belvoir, VA: Defense Technical Information Center, February 1985. http://dx.doi.org/10.21236/ada175010.
Full textNoctor, Stephen C. Contributions of Early Versus Later-Generated Cortical Layers to the Development of Laminar Patterns in Ferret Somatosensory Cortex. Fort Belvoir, VA: Defense Technical Information Center, June 1998. http://dx.doi.org/10.21236/ad1012052.
Full textSchneider, Steven P., and Steven H. Collicott. Laminar-Turbulent Transition in High-Speed Compressible Boundary Layers: Continuation of Elliptic-Cone Experiments. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada373478.
Full text