Academic literature on the topic 'Land use – Kansas – Data processing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Land use – Kansas – Data processing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Land use – Kansas – Data processing"
Arsenault, Kristi R., Sujay V. Kumar, James V. Geiger, Shugong Wang, Eric Kemp, David M. Mocko, Hiroko Kato Beaudoing, et al. "The Land surface Data Toolkit (LDT v7.2) – a data fusion environment for land data assimilation systems." Geoscientific Model Development 11, no. 9 (September 5, 2018): 3605–21. http://dx.doi.org/10.5194/gmd-11-3605-2018.
Full textWong, S. N., and M. L. R. Sarker. "Land use/land cover mapping using multi-scale texture processing of high resolution data." IOP Conference Series: Earth and Environmental Science 18 (February 25, 2014): 012185. http://dx.doi.org/10.1088/1755-1315/18/1/012185.
Full textGuliyeva, S. H. "LAND COVER / LAND USE MONITORING FOR AGRICULTURE FEATURES CLASSIFICATION." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2020 (August 21, 2020): 61–65. http://dx.doi.org/10.5194/isprs-archives-xliii-b3-2020-61-2020.
Full textSeo, Bumsuk, Christina Bogner, Thomas Koellner, and Bjorn Reineking. "Mapping Fractional Land Use and Land Cover in a Monsoon Region: The Effects of Data Processing Options." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9, no. 9 (September 2016): 3941–56. http://dx.doi.org/10.1109/jstars.2016.2544802.
Full textShelestov, Andrii, and Bohdan Yailymov. "The state of actual land use monitoring in the leading countries with use of satellite data." Ukrainian journal of remote sensing, no. 12 (May 11, 2017): 59–66. http://dx.doi.org/10.36023/ujrs.2017.12.93.
Full textFerretti, A., D. Colombo, A. Fumagalli, F. Novali, and A. Rucci. "InSAR data for monitoring land subsidence: time to think big." Proceedings of the International Association of Hydrological Sciences 372 (November 12, 2015): 331–34. http://dx.doi.org/10.5194/piahs-372-331-2015.
Full textMainuri, Zachary Gichuru, John M. Mironga, and Samuel M. Mwonga. "Land Use/Land Cover Changes in a Disturbed River Watershed Kenya." European Journal of Engineering and Formal Sciences 3, no. 2 (August 31, 2019): 29. http://dx.doi.org/10.26417/ejef.v3i2.p29-36.
Full textCehla, Béla, Ferenc Ede Búzás, Sándor Kiss, István Szűcs, and László Posta. "Possibilities of mass valuation in land use in Hungary." Acta Agraria Debreceniensis, no. 1 (June 1, 2021): 59–68. http://dx.doi.org/10.34101/actaagrar/1/9218.
Full textMalandra, Francesco, Alessandro Vitali, Carlo Urbinati, and Matteo Garbarino. "70 Years of Land Use/Land Cover Changes in the Apennines (Italy): A Meta-Analysis." Forests 9, no. 9 (September 8, 2018): 551. http://dx.doi.org/10.3390/f9090551.
Full textNivedita Priyadarshini, K., M. Kumar, S. A. Rahaman, and S. Nitheshnirmal. "A COMPARATIVE STUDY OF ADVANCED LAND USE/LAND COVER CLASSIFICATION ALGORITHMS USING SENTINEL-2 DATA." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-5 (November 19, 2018): 665–70. http://dx.doi.org/10.5194/isprs-archives-xlii-5-665-2018.
Full textDissertations / Theses on the topic "Land use – Kansas – Data processing"
陳章偉 and Cheung-Wai Jonathan Chan. "A neural network approach to land use/land cover change detection." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31238166.
Full textMiller, David B. "Decision support systems for land evaluation : theoretical and practical development." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/24865.
Full textScience, Faculty of
Resources, Environment and Sustainability (IRES), Institute for
Graduate
Nodine, Dewayne J. "Spatial decision support system for evaluation of land use plans based upon storm water runoff impacts : a theoretical framework." Virtual Press, 1996. http://liblink.bsu.edu/uhtbin/catkey/1020175.
Full textDepartment of Urban Planning
Riehl, Sean K. "Property Recommendation System with Geospatial Data Analytics and Natural Language Processing for Urban Land Use." Cleveland State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=csu1590513674513905.
Full textKidane, Dawit K. "Rule-based land cover classification model : expert system integration of image and non-image spatial data." Thesis, Stellenbosch : Stellenbosch University, 2005. http://hdl.handle.net/10019.1/50445.
Full textENGLISH ABSTRACT: Remote sensing and image processing tools provide speedy and up-to-date information on land resources. Although remote sensing is the most effective means of land cover and land use mapping, it is not without limitations. The accuracy of image analysis depends on a number of factors, of which the image classifier used is probably the most significant. It is noted that there is no perfect classifier, but some robust classifiers achieve higher accuracy results than others. For certain land cover/uses, discrimination based only on spectral properties is extremely difficult and often produces poor results. The use of ancillary data can improve the classification process. Some classifiers incorporate ancillary data before or after the classification process, which limits the full utilization of the information contained in the ancillary data. Expert classification, on the other hand, makes better use of ancillary data by incorporating data directly into the classification process. In this study an expert classification model was developed based on spatial operations designed to identify a specific land cover/use, by integrating both spectral and available ancillary data. Ancillary data were derived either from the spectral channels or from other spatial data sources such as DEM (Digital Elevation Model) and topographical maps. The model was developed in ERDAS Imagine image-processing software, using the expert engineer as a final integrator of the different constituent spatial operations. An attempt was made to identify the Level I land cover classes in the South African National Land Cover classification scheme hierarchy. Rules were determined on the basis of expert knowledge or statistical calculations of mean and variance on training samples. Although rules could be determined by using statistical applications, such as the classification analysis regression tree (CART), the absence of adequate and accurate training data for all land cover classes and the fact that all land cover classes do not require the same predictor variables makes this option less desirable. The result of the accuracy assessment showed that the overall classification accuracy was 84.3% and kappa statistics 0.829. Although this level of accuracy might be suitable for most applications, the model is flexible enough to be improved further.
AFRIKAANSE OPSOMMING: Afstandswaameming-en beeldverwerkingstegnieke kan akkurate informasie oorbodemhulpbronne weergee. Alhoewel afstandswaameming die mees effektiewe manier van grondbedekking en grondgebruikkartering is, is dit nie sonder beperkinge nie. Die akkuraatheid van beeldverwerking is afhanklik van verskeie faktore, waarvan die beeld klassifiseerder wat gebruik word, waarskynlik die belangrikste faktor is. Dit is welbekend dat daar geen perfekte klassifiseerder is nie, alhoewel sekere kragtige klassifiseerders hoër akkuraatheid as ander behaal. Vir sekere grondbedekking en -gebruike is uitkenning gebaseer op spektrale eienskappe uiters moeilik en dikwels word swak resultate behaal. Die gebruik van aanvullende data, kan die klassifikasieproses verbeter. Sommige klassifiseerders inkorporeer aanvullende data voor of na die klassifikasieproses, wat die volle aanwending van die informasie in die aanvullende data beperk. Deskundige klassifikasie, aan die ander kant, maak beter gebruik van aanvullende data deurdat dit data direk in die klassifikasieproses inkorporeer. Tydens hierdie studie is 'n deskundige klassifikasiemodel ontwikkel gebaseer op ruimtelike verwerkings, wat ontwerp is om spesifieke grondbedekking en -gebruike te identifiseer. Laasgenoemde is behaal deur beide spektrale en beskikbare aanvullende data te integreer. Aanvullende data is afgelei van, óf spektrale eienskappe, óf ander ruimtelike bronne soos 'n DEM (Digitale Elevasie Model) en topografiese kaarte. Die model is ontwikkel in ERDAS Imagine beeldverwerking sagteware, waar die 'expert engineer' as finale integreerder van die verskillende samestellende ruimtelike verwerkings gebruik is. 'n Poging is aangewend om die Klas I grondbedekkingklasse, in die Suid-Afrikaanse Nasionale Grondbedekking klassifikasiesisteem te identifiseer. Reëls is vasgestel aan die hand van deskundige begrippe of eenvoudige statistiese berekeninge van die gemiddelde en variansie van opleidingsdata. Alhoewel reëls met behulp van statistiese toepassings, soos die 'classification analysis regression tree (CART)' vasgestel kon word, maak die afwesigheid van genoegsame en akkurate opleidingsdata vir al die grondbedekkingsklasse hierdie opsie minder aantreklik. Bykomend tot laasgenoemde, vereis alle grondbedekkingsklasse nie dieselfde voorspellingsveranderlikes nie. Die resultaat van hierdie akkuraatheidsskatting toon dat die algehele klassifikasie-akkuraatheid 84.3% was en die kappa statistieke 0.829. Alhoewel hierdie vlak van akkuraatheid vir die meeste toepassings geskik is, is die model aanpasbaar genoeg om verder te verbeter.
麥淑嫻 and Shuk-han Ann Mak. "Automating knowledge acquisition and site-selection in a generic knowledge-based GIS system: a theoreticalstudy." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B31240720.
Full textMugadza, Precious. "An assessment of the usefulness of spatial agricultural land resource digital data for agritourism and ecotourism." Thesis, Link to the online version, 2005. http://hdl.handle.net/10019/1125.
Full textHammam, Yasser, and n/a. "Geographical vector agents." University of Otago. Department of Information Science, 2008. http://adt.otago.ac.nz./public/adt-NZDU20080404.150839.
Full textYeung, Kwok-wai Albert, and 楊國偉. "A photogrammetric land information system for urban analysis: a study of the development of Kowloon from1964 to 1979." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1987. http://hub.hku.hk/bib/B31231445.
Full textBreytenbach, Andre. "GIS-based land suitability assessment and allocation decision-making in a degraded rural environmen." Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/16599.
Full textENGLISH ABSTRACT: Rural development problems faced by the impoverished communities in the Transkei, South Africa, are numerous, and environmental degradation has already taken much of its toll. By working at a micro-catchment-level both the socio-economic and biophysical appreciation of the land resources were captured as encapsulated in the concept of resource management domains. Participatory decision-making allowed functional land use goals and evaluation criteria to be incorporated into computerised multi-criteria evaluation and multi-objective land use allocation models in order to reach an idealised or more sustainable land use situation. In the execution of the decision-making process seven procedural steps were followed, which are discussed in detail and applied in the case study. Synthesis of the results emphasised the envisaged rural planning potential of the methods used.
AFRIKAANSE OPSOMMING: In terme van plattelandse ontwikkeling staar talle probleme die behoeftige gemeenskappe van Transkei, Suid-Afrika, in die gesig en omgewingsdegradering neem ongehinderd sy tol. Deur op ‘n mikro-opvangsgebied vlak te werk kon beide die sosio-ekonomiese en biofisiese waarde van die gebied se hulpbronne bepaal word en uitgebeeld word in hulpbron bestuursdomeine. Deur deelnemende besluitneming is funksionele grondgebruiksdoelwitte en evaluasie kriteria gebruik in gerekenariseerde meervoudige kriteria evaluering en veeldoelige grondgebruiksaanwysingsmodelle ten einde die ideale of ‘n meer volhoubare grondgebruik situasie te verkry. Vir die uitvoering van die besluitnemingsproses is van sewe opeenvolgende stappe gebruik gemaak en die uitvoering daarvan word in diepte bespreek in hierdie gevallestudie. Sintese van die resultate het die potensiaal van hierdie beoogde landelike beplanningsmetodes beklemtoon.
Books on the topic "Land use – Kansas – Data processing"
D, McLaughlin John, ed. Land administration. Oxford: Oxford University Press, 1999.
Find full textSubcommittee, Wisconsin Land Records Committee Institutional Arrangements. Institutional arrangements for land information management in Wisconsin. [Madison, WI]: The Committee, 1987.
Find full textSubcommittee, Wisconsin Land Records Committee Classification and Standards. Report on land records classification and standards. [Madison, WI]: The Committee, 1987.
Find full textWisconsin Land Records Committee. Subcommittee on Property Records. Final report of the Subcommittee on Property Records. [Madison, WI]: Wisconsin Land Records Committee, 1987.
Find full textJaroondhampinij, Wattana. A model of computerized parcel-based land information system for the Department of Lands, Thailand. Kensington, N.S.W., Australia: School of Surveying, University of New South Wales, 1989.
Find full textRainis, Ruslan. The role of geographic information system (GIS) in USAID programme impact evaluation in Zaire: A case of agricultural sector in Bandundu region. [Kinshasa: s.n., 1990.
Find full textHolt, G. A. E. Computer application to real estate: A Canadian utility company application. [Vancouver]: B.C. Hydro, 1985.
Find full textD. D. van der Stelt-Scheele. Formulation and characteristics of GOAL. The Hague: Wetenschappelijke Raad voor het Regeringsbeleid, 1992.
Find full textDeggau, Michael. Pilotstudie Statistisches Informationssystem zur Bodennutzung (STABIS): Voruntersuchung. Bonn-Bad Godesberg: Der Bundesminister, 1989.
Find full textHitt, Kerie J. Refining 1970's land-use data with 1990 population data to indicate new residential development. Reston, VA: U.S. Geological Survey, 1994.
Find full textBook chapters on the topic "Land use – Kansas – Data processing"
Arsanjani, Jamal Jokar. "Data Preparation and Processing." In Dynamic land use/cover change modelling, 59–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23705-8_4.
Full textKidwell, Katherine B. "AVHRR Data Acquisition, Processing and Distribution at NOAA." In Advances in the Use of NOAA AVHRR Data for Land Applications, 433–53. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0203-9_18.
Full textArino, O. "AVHRR Data Acquisition, Processing and Distribution at the European Space Agency (ESA)." In Advances in the Use of NOAA AVHRR Data for Land Applications, 395–432. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0203-9_17.
Full textMohamed-Ghouse, Zaffar Sadiq, Cheryl Desha, and Luis Perez-Mora. "Digital Earth in Australia." In Manual of Digital Earth, 683–711. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9915-3_21.
Full textFonte, Cidália Costa, Joaquim António Patriarca, Marco Minghini, Vyron Antoniou, Linda See, and Maria Antonia Brovelli. "Using OpenStreetMap to Create Land Use and Land Cover Maps." In Geospatial Intelligence, 1100–1123. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-8054-6.ch047.
Full textFonte, Cidália Costa, Joaquim António Patriarca, Marco Minghini, Vyron Antoniou, Linda See, and Maria Antonia Brovelli. "Using OpenStreetMap to Create Land Use and Land Cover Maps." In Advances in Geospatial Technologies, 113–37. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-2446-5.ch007.
Full textChowdhury, Rinku Roy, and Laura C. Schneider. "Land Cover and Land Use: Classification and Change Analysis." In Integrated Land-Change Science and Tropical Deforestation in the Southern Yucatan. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780199245307.003.0015.
Full textDale, Peter, and John McLaughlin. "Land Information Management." In Land Administration. Oxford University Press, 2000. http://dx.doi.org/10.1093/oso/9780198233909.003.0012.
Full textEl Mansouri, Loubna, Said Lahssini, Rachid Hadria, Nadia Eddaif, Tarik Benabdelouahab, and Asmae Dakir. "Time Series Multispectral Images Processing for Crops and Forest Mapping." In Geospatial Technologies for Effective Land Governance, 83–106. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-5939-9.ch006.
Full textIsbaex, Crismeire, and Ana Margarida Coelho. "The Potential of Sentinel-2 Satellite Images for Land-Cover/Land-Use and Forest Biomass Estimation: A Review." In Forest Biomass - From Trees to Energy. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.93363.
Full textConference papers on the topic "Land use – Kansas – Data processing"
Deng, Dongpo. "Measurement of semantic similarity for land use and land cover classification systems." In International Conference on Earth Observation Data Processing and Analysis, edited by Deren Li, Jianya Gong, and Huayi Wu. SPIE, 2008. http://dx.doi.org/10.1117/12.815965.
Full textXie, Yunlin, and Mingjun Peng. "Monitoring land use change using remote sensing and GIS." In International Conference on Earth Observation Data Processing and Analysis, edited by Deren Li, Jianya Gong, and Huayi Wu. SPIE, 2008. http://dx.doi.org/10.1117/12.815747.
Full textYang, Guang, and Gang Qiao. "Data Processing Method for Current Land Use Using GIS Technology." In 2010 Second International Workshop on Education Technology and Computer Science. IEEE, 2010. http://dx.doi.org/10.1109/etcs.2010.336.
Full textZeng, Chen, and Yanfang Liu. "Urban land-use intensity extraction based on Quickbird high resolution image." In International Conference on Earth Observation Data Processing and Analysis, edited by Deren Li, Jianya Gong, and Huayi Wu. SPIE, 2008. http://dx.doi.org/10.1117/12.815998.
Full textHirose, Akira. "Big SAR data processing: Topographic and vegetation/land-use discovery for SAR data structurization." In 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). IEEE, 2019. http://dx.doi.org/10.1109/apsar46974.2019.9048429.
Full textNiu, Jiqiang, Yaolin Liu, Feng Xu, and Lijun Wei. "Study on optimization of land use structure based on RS and ecological green equivalent." In International Conference on Earth Observation Data Processing and Analysis, edited by Deren Li, Jianya Gong, and Huayi Wu. SPIE, 2008. http://dx.doi.org/10.1117/12.815976.
Full textLan, Zeying, Yanfang Liu, and Dan Chen. "Extraction of land-use information within rural residential area from high-resolution RS images." In International Conference on Earth Observation Data Processing and Analysis, edited by Deren Li, Jianya Gong, and Huayi Wu. SPIE, 2008. http://dx.doi.org/10.1117/12.816112.
Full textVillalon-Turrubiates, Ivan E. "Distributed land use classification with improved processing time using high-resolution multispectral data." In IGARSS 2012 - 2012 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2012. http://dx.doi.org/10.1109/igarss.2012.6351963.
Full textMa, Jianwei, Yayong Sun, Guohui Deng, Shifeng Huang, Yiting Tao, He Zhu, Qiang Teng, and Xianchao Meng. "Evaluation of Different Approaches of Convolutional Neural Networks for Land Use and Land Cover Classification Based on High Resolution Remote Sensing Images." In 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP). IEEE, 2019. http://dx.doi.org/10.1109/icsidp47821.2019.9173451.
Full textLiu, Fang, Zengxiang Zhang, Wenbin Tan, Tingting Dong, and Xianhu Wei. "Dynamic change analyses on the land use/land cover in arid areas of northwest China with RS and GIS: the case of Liangzhou County in Wuwei City." In International Conference on Earth Observation Data Processing and Analysis, edited by Deren Li, Jianya Gong, and Huayi Wu. SPIE, 2008. http://dx.doi.org/10.1117/12.811843.
Full textReports on the topic "Land use – Kansas – Data processing"
Lasko, Kristofer, and Sean Griffin. Monitoring Ecological Restoration with Imagery Tools (MERIT) : Python-based decision support tools integrated into ArcGIS for satellite and UAS image processing, analysis, and classification. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40262.
Full text