Academic literature on the topic 'Landau-Ginzburg models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Landau-Ginzburg models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Landau-Ginzburg models"
Przyjalkowski, V. V. "Toric Landau–Ginzburg models." Russian Mathematical Surveys 73, no. 6 (December 2018): 1033–118. http://dx.doi.org/10.1070/rm9852.
Full textVAFA, CUMRUN. "TOPOLOGICAL LANDAU-GINZBURG MODELS." Modern Physics Letters A 06, no. 04 (February 10, 1991): 337–46. http://dx.doi.org/10.1142/s0217732391000324.
Full textRichardson, G., and J. Rubinstein. "Canonical reduced Ginzburg–Landau models." Physica C: Superconductivity 332, no. 1-4 (May 2000): 289–91. http://dx.doi.org/10.1016/s0921-4534(99)00688-7.
Full textGuffin, Josh, and Eric Sharpe. "A-twisted Landau–Ginzburg models." Journal of Geometry and Physics 59, no. 12 (December 2009): 1547–80. http://dx.doi.org/10.1016/j.geomphys.2009.07.014.
Full textChun, E. J., J. Mas, J. Lauer, and H. P. Nilles. "Duality and Landau-Ginzburg models." Physics Letters B 233, no. 1-2 (December 1989): 141–46. http://dx.doi.org/10.1016/0370-2693(89)90630-8.
Full textClarke, Patrick. "Birationality and Landau–Ginzburg Models." Communications in Mathematical Physics 353, no. 3 (February 7, 2017): 1241–60. http://dx.doi.org/10.1007/s00220-017-2830-0.
Full textWITTEN, EDWARD. "ON THE LANDAU-GINZBURG DESCRIPTION OF N=2 MINIMAL MODELS." International Journal of Modern Physics A 09, no. 27 (October 30, 1994): 4783–800. http://dx.doi.org/10.1142/s0217751x9400193x.
Full textHarder, Andrew. "Hodge numbers of Landau–Ginzburg models." Advances in Mathematics 378 (February 2021): 107436. http://dx.doi.org/10.1016/j.aim.2020.107436.
Full textVélez, Alexander Quintero. "McKay correspondence for Landau–Ginzburg models." Communications in Number Theory and Physics 3, no. 1 (2009): 173–208. http://dx.doi.org/10.4310/cntp.2009.v3.n1.a4.
Full textMelnikov, Ilarion V. "(0,2) Landau-Ginzburg models and residues." Journal of High Energy Physics 2009, no. 09 (September 28, 2009): 118. http://dx.doi.org/10.1088/1126-6708/2009/09/118.
Full textDissertations / Theses on the topic "Landau-Ginzburg models"
Cordner, Nathan James. "Isomorphisms of Landau-Ginzburg B-Models." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5882.
Full textShamoto, Yota. "Hodge-Tate conditions for Landau-Ginzburg models." Kyoto University, 2018. http://hdl.handle.net/2433/232220.
Full textWilliams, Matthew Michael. "Mirror Symmetry for Non-Abelian Landau-Ginzburg Models." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8560.
Full textWeinreb, Paul Alexander. "Matrix factorisations and orbifold equivalence in Landau Ginzburg models." Thesis, King's College London (University of London), 2018. https://kclpure.kcl.ac.uk/portal/en/theses/matrix-factorisations-and-orbifold-equivalence-in-landau-ginzburg-models(760aa6e1-39fc-40e5-8217-16071295ab3f).html.
Full textPeshkov, Anton. "Boltzmann-Ginzburg-Landau approach to simple models of active matter." Paris 6, 2013. http://www.theses.fr/2013PA066340.
Full textThe phenomenon of collective motion is present among many different biological systems like bird flocks or fish schools. In these systems, the collective motion arises without any leader or external force, and is only due to interaction among individuals and the out of equilibrium nature of the whole system. We want to study simple models of collective motion in order to establish universality classes among dry active matter, i. E. Individuals that interact without the help of a fluid medium. Many of such systems have already been studied microscopically. We want to obtain coarse-grained equations of such models to confirm the microscopical results and to predict new properties. We perform a derivation of hydrodynamic equations using the introduced Boltzmann-Ginzburg-Landau approach. The equations are derived for four different Vicsek type models. A simple polar model, a mixed case of polar particles with nematic interactions, a model of nematic particles with nematic interactions and finally a model for polar particles with metric free interactions. In each case, the obtained equations are studied analytically and numerically. We find out that the hydrodynamic equations reproduce faithfully the qualitative properties of underlying microscopical models, like the different observed phases and the nature of phase transition between them. Some new phases not previously observed in microscopical models are found. Most of them where a posteriori confirmed in simulations of microscopical models
Johnson, Jared Drew. "An Algebra Isomorphism for the Landau-Ginzburg Mirror Symmetry Conjecture." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2793.
Full textDeang, Jennifer Marie. "A Study of Inhomogeneities and Anisotrophies In Superconductors via Ginzburg-Landau Type models." Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/30326.
Full textPh. D.
Haas, Tobias [Verfasser], and Guido [Akademischer Betreuer] Schneider. "Amplitude equations for Boussinesq and Ginzburg-Landau-like models / Tobias Haas ; Betreuer: Guido Schneider." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2019. http://d-nb.info/1211649709/34.
Full textMerrell, Evan D. "A Maple Program for Computing Landau-Ginzburg A- and B-Models and an Exploration of Mirror Symmetry." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3322.
Full textValdez-Balderas, Daniel. "Models for inhomogeneities and thermal fluctuations in two-dimensional superconductors." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1180117179.
Full textBooks on the topic "Landau-Ginzburg models"
Provatas, Nicholas. Phase-field methods in materials science and engineering. Weinheim: Wiley-VCH, 2010.
Find full textSandier, Etienne, and Sylvia Serfaty. Vortices in the Magnetic Ginzburg-Landau Model. Boston, MA: Birkhäuser Boston, 2007. http://dx.doi.org/10.1007/978-0-8176-4550-2.
Full textPacard, Frank, and Tristan Riviere. Linear and Nonlinear Aspects of Vortices: The Ginzburg-Landau Model (Progress in Nonlinear Differential Equations and Their Applications). Birkhäuser Boston, 2000.
Find full textVortices in the Magnetic Ginzburg-Landau Model (Progress in Nonlinear Differential Equations and Their Applications). Birkhäuser Boston, 2006.
Find full textZeitlin, Vladimir. Resonant Wave Interactions and Resonant Excitation of Wave-guide Modes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198804338.003.0012.
Full textVortices in the Magnetic Ginzburg-Landau Model (Progress in Nonlinear Differential Equations and Their Applications Book 70). Birkhäuser, 2008.
Find full textBook chapters on the topic "Landau-Ginzburg models"
Duplij, Steven, and Steven Duplij. "Landau-Ginzburg Models." In Concise Encyclopedia of Supersymmetry, 226. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_295.
Full textCoullet, P., and L. Gil. "Ginzburg-Landau models of non-equilibrium." In Partially Intergrable Evolution Equations in Physics, 261–75. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0591-7_8.
Full textHoffmann, Karl-Heinz, and Qi Tang. "Thin Plate/Film G-L Models." In Ginzburg-Landau Phase Transition Theory and Superconductivity, 251–81. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8274-3_8.
Full textRipka, Georges. "3 The Landau-Ginzburg Model of a Dual Superconductor." In Dual Superconductor Models of Color Confinement, 33–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-40989-2_3.
Full textRuddat, Helge. "Mirror Duality of Landau–Ginzburg Models via Discrete Legendre Transforms." In Lecture Notes of the Unione Matematica Italiana, 377–406. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06514-4_9.
Full textAlama, S., and L. Bronsard. "Symmetric Vortex Solutions in the U(1) and SO(5) Ginzburg-Landau Models of Superconductivity." In Nonlinear PDE’s in Condensed Matter and Reactive Flows, 323–37. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0307-0_14.
Full textKtitorov, S. A., and E. S. Babaev. "Fluctuations in the Lattice Ginzburg-Landau Model." In Fluctuation Phenomena in High Temperature Superconductors, 301–9. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5536-6_24.
Full textIzadi, Mojtaba, Charles R. Koch, and Stevan S. Dubljevic. "Model Predictive Control of Ginzburg-Landau Equation." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 75–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98177-2_5.
Full textBethuel, Fabrice, Haim Brezis, and Frederic Helein. "Non-minimizing solutions of the Ginzburg-Landau equation." In Modern Birkhäuser Classics, 107–36. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66673-0_10.
Full textHuebener, Rudolf P. "Ginzburg-Landau-Theorie, Magnetische Fluss-Quantisierung, London-Modell." In essentials, 19–24. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-19383-6_5.
Full textConference papers on the topic "Landau-Ginzburg models"
Morikawa, Okuto. "Numerical study of ADE-type $\mathcal{N}=2$ Landau-Ginzburg models." In 37th International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.363.0145.
Full textDong, Wen, David Pisani, and Christopher S. Lynch. "A Discrete Phase Model for Ferroelectric Domain Evolution." In ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5061.
Full textMa, Zhanhua, and Clarence Rowley. "Low-dimensional Linearized Models for Systems with Periodic Orbits, with Application to the Ginzburg-Landau Equation." In 4th Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-4196.
Full textBerti, V., and M. Fabrizio. "Well-Posedness for a Ginzburg-Landau Model in Superfluidity." In Proceedings of the International Conference in Honour of Brian Straughan. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814293228_0001.
Full textBittner, Elmar, Axel Krinner, and Wolfhard Janke. "Vortex-Line Percolation in a Three-Dimensional Complex Ginzburg-Landau Model." In XXIIIrd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2005. http://dx.doi.org/10.22323/1.020.0247.
Full textDutt, S. "Study of phase transitions in the light of Ginzburg-Landau model." In INTERNATIONAL CONFERENCE ON RECENT TRENDS IN NUCLEAR PHYSICS-2012: ICRTNP-2012. AIP, 2013. http://dx.doi.org/10.1063/1.4801728.
Full textDhote, Rakesh P., Roderick V. N. Melnik, Jean W. Zu, and Linxiang Wang. "Microstructures of Constrained Shape Memory Alloy Nanowires Under Thermal Effects." In ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3814.
Full textLiu, T., and C. S. Lynch. "Phase Field Simulation of Ferroelectric Single Crystals." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79622.
Full textSchrade, David, Bai-Xiang Xu, Ralf Mu¨ller, and Dietmar Gross. "On Phase Field Modeling of Ferroelectrics: Parameter Identification and Verification." In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-411.
Full textCohen, Kelly, Stefan Siegel, Thomas Mclaughlin, and James Myatt. "Proper Orthogonal Decomposition Modeling of a Controlled Ginzburg-Landau Cylinder Wake Model." In 41st Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-1292.
Full textReports on the topic "Landau-Ginzburg models"
Callander, Brian, Elizabeth Gasparim, Rollo Jenkins, and Lino Marcos Silva. Self-Duality for Landau--Ginzburg Models. Jgsp, 2014. http://dx.doi.org/10.7546/jgsp-35-2014-1-10.
Full textHatch, D. M., A. Saxena, and G. R. Barsch. Landau-Ginzburg model of interphase boundaries in CsCl-type ferroelastics due to M{sup -}{sub 5} mode instability: LaAg{sub 1-x}In{sub x}. Office of Scientific and Technical Information (OSTI), July 1995. http://dx.doi.org/10.2172/88653.
Full text