To see the other types of publications on this topic, follow the link: Landau-Ginzburg models.

Journal articles on the topic 'Landau-Ginzburg models'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Landau-Ginzburg models.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Przyjalkowski, V. V. "Toric Landau–Ginzburg models." Russian Mathematical Surveys 73, no. 6 (December 2018): 1033–118. http://dx.doi.org/10.1070/rm9852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

VAFA, CUMRUN. "TOPOLOGICAL LANDAU-GINZBURG MODELS." Modern Physics Letters A 06, no. 04 (February 10, 1991): 337–46. http://dx.doi.org/10.1142/s0217732391000324.

Full text
Abstract:
We derive a general expression for correlation functions of topological Landau-Ginzburg models on an arbitrary genus Riemann surface. The expressions we find for the correlation functions suggest that for ĉ>1 the perturbation of the theory by chiral primary fields of dimensions bigger than one is rather singular, though perturbation by relevant chiral primary fields seems sensible regardless of the value of ĉ.
APA, Harvard, Vancouver, ISO, and other styles
3

Richardson, G., and J. Rubinstein. "Canonical reduced Ginzburg–Landau models." Physica C: Superconductivity 332, no. 1-4 (May 2000): 289–91. http://dx.doi.org/10.1016/s0921-4534(99)00688-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Guffin, Josh, and Eric Sharpe. "A-twisted Landau–Ginzburg models." Journal of Geometry and Physics 59, no. 12 (December 2009): 1547–80. http://dx.doi.org/10.1016/j.geomphys.2009.07.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chun, E. J., J. Mas, J. Lauer, and H. P. Nilles. "Duality and Landau-Ginzburg models." Physics Letters B 233, no. 1-2 (December 1989): 141–46. http://dx.doi.org/10.1016/0370-2693(89)90630-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Clarke, Patrick. "Birationality and Landau–Ginzburg Models." Communications in Mathematical Physics 353, no. 3 (February 7, 2017): 1241–60. http://dx.doi.org/10.1007/s00220-017-2830-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

WITTEN, EDWARD. "ON THE LANDAU-GINZBURG DESCRIPTION OF N=2 MINIMAL MODELS." International Journal of Modern Physics A 09, no. 27 (October 30, 1994): 4783–800. http://dx.doi.org/10.1142/s0217751x9400193x.

Full text
Abstract:
The conjecture that N=2 minimal models in two dimensions are critical points of a superrenormalizable Landau-Ginzburg model can be tested by computing the path integral of the Landau-Ginzburg model with certain twisted boundary conditions. This leads to simple expressions for certain characters of the N=2 models which can be verified at least at low levels. An N=2 superconformal algebra can in fact be found directly in the noncritical Landau-Ginzburg system, giving further support for the conjecture.
APA, Harvard, Vancouver, ISO, and other styles
8

Harder, Andrew. "Hodge numbers of Landau–Ginzburg models." Advances in Mathematics 378 (February 2021): 107436. http://dx.doi.org/10.1016/j.aim.2020.107436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vélez, Alexander Quintero. "McKay correspondence for Landau–Ginzburg models." Communications in Number Theory and Physics 3, no. 1 (2009): 173–208. http://dx.doi.org/10.4310/cntp.2009.v3.n1.a4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Melnikov, Ilarion V. "(0,2) Landau-Ginzburg models and residues." Journal of High Energy Physics 2009, no. 09 (September 28, 2009): 118. http://dx.doi.org/10.1088/1126-6708/2009/09/118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Clarke, Patrick. "Duality for toric Landau–Ginzburg models." Advances in Theoretical and Mathematical Physics 21, no. 1 (2017): 243–87. http://dx.doi.org/10.4310/atmp.2017.v21.n1.a5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Guffin, Josh, and Eric Sharpe. "A-twisted heterotic Landau–Ginzburg models." Journal of Geometry and Physics 59, no. 12 (December 2009): 1581–96. http://dx.doi.org/10.1016/j.geomphys.2009.07.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

BOURDEAU, MICHELLE, ELI J. MLAWER, HAROLD RIGGS, and HOWARD J. SCHNITZER. "TOPOLOGICAL LANDAU-GINZBURG MATTER FROM SP(N)K FUSION RINGS." Modern Physics Letters A 07, no. 08 (March 14, 1992): 689–700. http://dx.doi.org/10.1142/s0217732392000665.

Full text
Abstract:
We find and analyze the Landau-Ginzburg potentials whose critical points determine chiral rings which are exactly the fusion rings of SP (N)K WZW models. The quasihomogeneous part of the potential associated with SP (N)K is the same as the quasihomogeneous part of that associated with SU (N+1)K, showing that these potentials are different perturbations of the same Grassmannian potential. Twisted N=2 topological Landau-Ginzburg theories are derived from these superpotentials. The correlation functions, which are just the SP (N)K Verlinde dimensions, are expressed as fusion residues. We note that the SP (N)K and SP (K)N topological Landau-Ginzburg theories are identical, and that while the SU (N)K and SU (K)N topological Landau-Ginzburg models are not, they are simply related.
APA, Harvard, Vancouver, ISO, and other styles
14

FUCHS, JÜRGEN, and MAXIMILIAN KREUZER. "ON THE LANDAU–GINZBURG DESCRIPTION OF $(A_1^{(1)})^{\oplus N}$ INVARIANTS." International Journal of Modern Physics A 09, no. 08 (March 30, 1994): 1287–304. http://dx.doi.org/10.1142/s0217751x94000583.

Full text
Abstract:
We search for a Landau–Ginzburg interpretation of nondiagonal modular invariants of tensor products of minimal n = 2 superconformal models, looking in particular at automorphism invariants and at some exceptional cases. For the former we find a simple description as Landau–Ginzburg orbifolds, which reproduces the correct chiral rings as well as the spectra of various Gepner type models and orbifolds thereof. On the other hand, we are able to prove for one of the exceptional cases that this conformal field theory cannot be described by an orbifold of a Landau–Ginzburg model with respect to a manifest linear symmetry of its potential.
APA, Harvard, Vancouver, ISO, and other styles
15

Savu, Anamaria. "Closed and Exact Functions in the Context of Ginzburg–Landau Models." Canadian Journal of Mathematics 60, no. 3 (June 1, 2008): 685–702. http://dx.doi.org/10.4153/cjm-2008-030-5.

Full text
Abstract:
AbstractFor a general vector field we exhibit two Hilbert spaces, namely the space of so called closed functions and the space of exact functions and we calculate the codimension of the space of exact functions inside the larger space of closed functions. In particular we provide a new approach for the known cases: the Glauber field and the second-order Ginzburg–Landau field and for the case of the fourth-order Ginzburg–Landau field.
APA, Harvard, Vancouver, ISO, and other styles
16

Shamoto, Yota. "Hodge–Tate Conditions for Landau–Ginzburg Models." Publications of the Research Institute for Mathematical Sciences 54, no. 3 (July 23, 2018): 469–515. http://dx.doi.org/10.4171/prims/54-3-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Diemer, Colin, Colin Diemer, Людмил Кацарков, Ludmil Katzarkov, Gabriel Kerr, and Gabriel Kerr. "Compactifications of spaces of Landau - Ginzburg models." Известия Российской академии наук. Серия математическая 77, no. 3 (2013): 55–76. http://dx.doi.org/10.4213/im8019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Li, Si. "A mirror theorem between Landau–Ginzburg models." Nuclear Physics B 898 (September 2015): 707–14. http://dx.doi.org/10.1016/j.nuclphysb.2015.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Brunner, Ilka, and Daniel Roggenkamp. "B-type defects in Landau-Ginzburg models." Journal of High Energy Physics 2007, no. 08 (August 31, 2007): 093. http://dx.doi.org/10.1088/1126-6708/2007/08/093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Melnikov, Ilarion V., and Savdeep Sethi. "Half-twisted (0, 2) Landau-Ginzburg models." Journal of High Energy Physics 2008, no. 03 (March 13, 2008): 040. http://dx.doi.org/10.1088/1126-6708/2008/03/040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Diemer, Colin, Ludmil Katzarkov, and Gabriel Kerr. "Compactifications of spaces of Landau-Ginzburg models." Izvestiya: Mathematics 77, no. 3 (June 24, 2013): 487–508. http://dx.doi.org/10.1070/im2013v077n03abeh002645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Przyjalkowski, Victor. "On Landau–Ginzburg models for Fano varieties." Communications in Number Theory and Physics 1, no. 4 (2007): 713–28. http://dx.doi.org/10.4310/cntp.2007.v1.n4.a4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Walcher, Johannes. "Landau-Ginzburg models in real mirror symmetry." Annales de l’institut Fourier 61, no. 7 (2011): 2865–83. http://dx.doi.org/10.5802/aif.2796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Carqueville, Nils, and Flavio Montiel Montoya. "Extending Landau-Ginzburg Models to the Point." Communications in Mathematical Physics 379, no. 3 (October 7, 2020): 955–77. http://dx.doi.org/10.1007/s00220-020-03871-5.

Full text
Abstract:
Abstract We classify framed and oriented 2-1-0-extended TQFTs with values in the bicategories of Landau-Ginzburg models, whose objects and 1-morphisms are isolated singularities and (either $$\mathbb {Z}_2$$ Z 2 - or $$(\mathbb {Z}_2 \times \mathbb {Q})$$ ( Z 2 × Q ) -graded) matrix factorisations, respectively. For this we present the relevant symmetric monoidal structures and find that every object $$W\in \mathbb {k}[x_1,\dots ,x_n]$$ W ∈ k [ x 1 , ⋯ , x n ] determines a framed extended TQFT. We then compute the Serre automorphisms $$S_W$$ S W to show that W determines an oriented extended TQFT if the associated category of matrix factorisations is $$(n-2)$$ ( n - 2 ) -Calabi-Yau. The extended TQFTs we construct from W assign the non-separable Jacobi algebra of W to a circle. This illustrates how non-separable algebras can appear in 2-1-0-extended TQFTs, and more generally that the question of extendability depends on the choice of target category. As another application, we show how the construction of the extended TQFT based on $$W=x^{N+1}$$ W = x N + 1 given by Khovanov and Rozansky can be derived directly from the cobordism hypothesis.
APA, Harvard, Vancouver, ISO, and other styles
25

Mas, Javier. "Duality in orbifolds and Ginzburg-Landau models." Nuclear Physics B - Proceedings Supplements 16 (August 1990): 537–38. http://dx.doi.org/10.1016/0920-5632(90)90587-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Gaite, JoséC. "Landau-Ginzburg lagrangians for W-algebra models." Nuclear Physics B 411, no. 1 (January 1994): 321–39. http://dx.doi.org/10.1016/0550-3213(94)90062-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Noguchi, Masayuki, and Sung-Kil Yang. "Non-scale-invariant topological Landau-Ginzburg models." Physics Letters B 360, no. 1-2 (October 1995): 35–40. http://dx.doi.org/10.1016/0370-2693(95)01147-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Carqueville, Nils, and Daniel Murfet. "Adjunctions and defects in Landau–Ginzburg models." Advances in Mathematics 289 (February 2016): 480–566. http://dx.doi.org/10.1016/j.aim.2015.03.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Hirano, Yuki. "Derived Knörrer periodicity and Orlov’s theorem for gauged Landau–Ginzburg models." Compositio Mathematica 153, no. 5 (March 23, 2017): 973–1007. http://dx.doi.org/10.1112/s0010437x16008344.

Full text
Abstract:
We prove a Knörrer-periodicity-type equivalence between derived factorization categories of gauged Landau–Ginzburg models, which is an analogy of a theorem proved by Shipman and Isik independently. As an application, we obtain a gauged Landau–Ginzburg version of Orlov’s theorem describing a relationship between categories of graded matrix factorizations and derived categories of hypersurfaces in projective spaces, by combining the above Knörrer periodicity type equivalence and the theory of variations of geometric invariant theory quotients due to Ballard, Favero and Katzarkov.
APA, Harvard, Vancouver, ISO, and other styles
30

GIVEON, AMIT, and DIRK-JAN SMIT. "EXACT YUKAWA COUPLINGS FROM TOPOLOGICAL LANDAU–GINZBURG MODELS." Modern Physics Letters A 06, no. 24 (August 10, 1991): 2211–15. http://dx.doi.org/10.1142/s0217732391002438.

Full text
Abstract:
The Yukawa couplings of (2, 2) superstring vacua of matter fields, corresponding to untwisted (c, c) marginal chiral states, are computed exactly, as functions of the moduli, using d = 3 topological Landau–Ginzburg models.
APA, Harvard, Vancouver, ISO, and other styles
31

LI, KEKE. "SOME LANDAU-GINZBURG MODELS FROM CONFORMAL FIELD THEORY." International Journal of Modern Physics A 05, no. 12 (June 20, 1990): 2343–58. http://dx.doi.org/10.1142/s0217751x90001094.

Full text
Abstract:
A method of constructing critical (fixed point) Landau-Ginzburg action from operator algebra is applied to several classes of conformal field theories, including lines of c = 1 models and the coset models based on SU(2) current algebra. For the c = 1 models, the Landau-Ginzberg potential is argued to be physically consistent, and it resembles a modality-one singularity with modal deformation representing exactly the marginal deformation. The potentials for the coset models manifestly possess correct discrete symmetries.
APA, Harvard, Vancouver, ISO, and other styles
32

CHUN, E. J., J. LAUER, and H. P. NILLES. "EQUIVALENCE OF ZN ORBIFOLDS AND LANDAU-GINZBURG MODELS." International Journal of Modern Physics A 07, no. 10 (April 20, 1992): 2175–91. http://dx.doi.org/10.1142/s0217751x9200096x.

Full text
Abstract:
We show that Landau-Ginzburg models with modality one are equivalent to ZN orbifold models on two-dimensional tori. The identification of the primary field content is given and the operator product coefficients of the twisted sectors are computed explicitly.
APA, Harvard, Vancouver, ISO, and other styles
33

Gao, Hongjun, and Keng-Huat Kwek. "Global existence for the generalised 2D Ginzburg-Landau equation." ANZIAM Journal 44, no. 3 (January 2003): 381–92. http://dx.doi.org/10.1017/s1446181100008099.

Full text
Abstract:
AbstractGinzburg-Landau type complex partial differential equations are simplified mathematical models for various pattern formation systems in mechanics, physics and chemistry. Most work so far has concentrated on Ginzburg-Landau type equations with one spatial variable (1D). In this paper, the authors study a complex generalised Ginzburg-Landau equation with two spatial variables (2D) and fifth-order and cubic terms containing derivatives. Based on detail analysis, sufficient conditions for the existence and uniqueness of global solutions are obtained.
APA, Harvard, Vancouver, ISO, and other styles
34

KREUZER, MAXIMILIAN, and HARALD SKARKE. "LANDAU-GINZBURG ORBIFOLDS WITH DISCRETE TORSION." Modern Physics Letters A 10, no. 13n14 (May 10, 1995): 1073–85. http://dx.doi.org/10.1142/s0217732395001198.

Full text
Abstract:
We complete the classification of (2, 2) vacua that can be constructed from Landau-Ginzburg models by Abelian twists with arbitrary discrete torsions. Compared to the case without torsion, the number of new spectra is surprisingly small. In contrast to a popular expectation mirror symmetry does not seem to be related to discrete torsion (at least not in the present compactification framework). The Berglund-Hübsch construction naturally extends to orbifolds with torsion; for more general potentials, on the other hand, the new spectra neither have nor provide mirror partners in our class of models.
APA, Harvard, Vancouver, ISO, and other styles
35

Thomas Reichelt and Christian Sevenheck. "Non-affine Landau-Ginzburg models and intersection cohomology." Annales scientifiques de l'École normale supérieure 50, no. 3 (2017): 665–753. http://dx.doi.org/10.24033/asens.2330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Babalic, E. M., D. Doryn, C. I. Lazaroiu, and M. Tavakol. "B-type Landau-Ginzburg models on Stein manifolds." Journal of Physics: Conference Series 1194 (April 2019): 012010. http://dx.doi.org/10.1088/1742-6596/1194/1/012010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Francis, Amanda, Nathan Priddis, and Andrew Schaug. "Borcea–Voisin mirror symmetry for Landau–Ginzburg models." Illinois Journal of Mathematics 63, no. 3 (October 2019): 425–61. http://dx.doi.org/10.1215/00192082-7899497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Przyjalkowski, V. V. "Weak Landau-Ginzburg models for smooth Fano threefolds." Izvestiya: Mathematics 77, no. 4 (August 29, 2013): 772–94. http://dx.doi.org/10.1070/im2013v077n04abeh002660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Katzarkov, Ludmil, Maxim Kontsevich, and Tony Pantev. "Bogomolov–Tian–Todorov theorems for Landau–Ginzburg models." Journal of Differential Geometry 105, no. 1 (January 2017): 55–117. http://dx.doi.org/10.4310/jdg/1483655860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Bethuel, Fabrice, Giandomenico Orlandi, and Didier Smets. "Aspects of vortex dynamics in Ginzburg-Landau models." PAMM 7, no. 1 (December 2007): 1040401–2. http://dx.doi.org/10.1002/pamm.200700516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kapustin, Anton, and Yi Li. "Topological Correlators in Landau-Ginzburg Models with Boundaries." Advances in Theoretical and Mathematical Physics 7, no. 4 (2003): 727–49. http://dx.doi.org/10.4310/atmp.2003.v7.n4.a5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kwasniok, Frank. "Low-Dimensional Models of the Ginzburg--Landau Equation." SIAM Journal on Applied Mathematics 61, no. 6 (January 2001): 2063–79. http://dx.doi.org/10.1137/s0036139900368212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Greene, B. R., S. S. Roan, and S. T. Yau. "Geometric singularities and spectra of Landau-Ginzburg models." Communications in Mathematical Physics 142, no. 2 (December 1991): 245–59. http://dx.doi.org/10.1007/bf02102062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Yau, Horng-Tzer. "Relative entropy and hydrodynamics of Ginzburg-Landau models." Letters in Mathematical Physics 22, no. 1 (May 1991): 63–80. http://dx.doi.org/10.1007/bf00400379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

He, Weiqiang, Si Li, and Yifan Li. "G-twisted Braces and Orbifold Landau–Ginzburg Models." Communications in Mathematical Physics 373, no. 1 (January 2020): 175–217. http://dx.doi.org/10.1007/s00220-019-03653-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Lerche, W., D. Lüst, and N. P. Warner. "Duality symmetries in N = 2 Landau-Ginzburg models." Physics Letters B 231, no. 4 (November 1989): 417–24. http://dx.doi.org/10.1016/0370-2693(89)90686-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Howe, P. S., and P. C. West. "Fixed points in multi-field Landau-Ginzburg models." Physics Letters B 244, no. 2 (July 1990): 270–74. http://dx.doi.org/10.1016/0370-2693(90)90068-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Carqueville, Nils, and Ingo Runkel. "Rigidity and Defect Actions in Landau-Ginzburg Models." Communications in Mathematical Physics 310, no. 1 (January 5, 2012): 135–79. http://dx.doi.org/10.1007/s00220-011-1403-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Peres, L., and J. Rubinstein. "Vortex dynamics in U(1) Ginzburg-Landau models." Physica D: Nonlinear Phenomena 64, no. 1-3 (April 1993): 299–309. http://dx.doi.org/10.1016/0167-2789(93)90261-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ballico, E., E. Gasparim, L. Grama, and L. A. B. San Martin. "Some Landau–Ginzburg models viewed as rational maps." Indagationes Mathematicae 28, no. 3 (June 2017): 615–28. http://dx.doi.org/10.1016/j.indag.2017.01.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography