Academic literature on the topic 'Landfill cover layer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Landfill cover layer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Landfill cover layer"
Chabuk, Ali, Nadhir Al-Ansari, Karwan Alkaradaghi, Abdulla Al-Rawabdeh, Jan Laue, Hussain Hussain, Roland Pusch, and Sven Knutsson. "Landfill Final Cover Systems Design for Arid Areas Using the HELP Model: A Case Study in the Babylon Governorate, Iraq." Sustainability 10, no. 12 (December 3, 2018): 4568. http://dx.doi.org/10.3390/su10124568.
Full textNg, Charles W. W., R. Chen, J. L. Coo, J. Liu, J. J. Ni, Y. M. Chen, L. t. Zhan, H. W. Guo, and B. W. Lu. "A novel vegetated three-layer landfill cover system using recycled construction wastes without geomembrane." Canadian Geotechnical Journal 56, no. 12 (December 2019): 1863–75. http://dx.doi.org/10.1139/cgj-2017-0728.
Full textPehme, Kaur-Mikk, Kaja Orupõld, Valdo Kuusemets, Ottar Tamm, Yahya Jani, Toomas Tamm, and Mait Kriipsalu. "Field Study on the Efficiency of a Methane Degradation Layer Composed of Fine Fraction Soil from Landfill Mining." Sustainability 12, no. 15 (August 1, 2020): 6209. http://dx.doi.org/10.3390/su12156209.
Full textOfrikhter, Vadim G., Galina M. Batrakova, and Natalia N. Sliusar. "Modeling the stress-strain state of of a municipal solid waste landfill." Vestnik MGSU, no. 6 (June 2020): 776–88. http://dx.doi.org/10.22227/1997-0935.2020.6.776-788.
Full textVangpaisal, Thaveesak. "Simulation of Final Cover Systems in Mitigating Landfill Gas Migration." Applied Mechanics and Materials 587-589 (July 2014): 886–91. http://dx.doi.org/10.4028/www.scientific.net/amm.587-589.886.
Full textBennett, Peter J., Frederick J. Longstaffe, and R. Kerry Rowe. "The stability of dolomite in landfill leachate-collection systems." Canadian Geotechnical Journal 37, no. 2 (April 1, 2000): 371–78. http://dx.doi.org/10.1139/t99-110.
Full textKaranac, Milica, Mica Jovanovic, Eugène Timmermans, Huib Mulleneers, Marina Mihajlovic, and Jovan Jovanovic. "Impermeable layers in landfill design." Chemical Industry 67, no. 6 (2013): 961–73. http://dx.doi.org/10.2298/hemind121227012k.
Full textPlé, Olivier, Thi Ngoc Hà Lê, and Murad S. AbuAisha. "Landfill Clay Barrier: Fibre Reinforcement Technique." Advanced Materials Research 378-379 (October 2011): 780–84. http://dx.doi.org/10.4028/www.scientific.net/amr.378-379.780.
Full textHu, Lifang, and Yuyang Long. "Effect of landfill cover layer modification on methane oxidation." Environmental Science and Pollution Research 23, no. 24 (October 1, 2016): 25393–401. http://dx.doi.org/10.1007/s11356-016-7632-y.
Full textSholokhova, A., O. Tsibernaja, V. Mykhaylenko, J. Burlakovs, V. Kuusemets, K. M. Pehme, and M. Kriipsalu. "PILOT-SCALE METHANE DEGRADATION BIOCOVER AT OPERATING LANDFILL." Bulletin of Taras Shevchenko National University of Kyiv. Geography, no. 74 (2019): 88–92. http://dx.doi.org/10.17721/1728-2721.2019.74.15.
Full textDissertations / Theses on the topic "Landfill cover layer"
Hill, Dean. "Designing a vegetative cover on landfill and hazardous waste multi-layer cap systems." Virtual Press, 1996. http://liblink.bsu.edu/uhtbin/catkey/1020167.
Full textDepartment of Landscape Architecture
Santos, Gemmelle Oliveira. "AvaliaÃÃo do Cultivo de GramÃneas na SuperfÃcie de Aterro SanitÃrio, com Ãnfase para a ReduÃÃo da EmissÃo de Metano e DiÃxido de Carbono para a Atmosfera." Universidade Federal do CearÃ, 2012. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=8838.
Full textNesta pesquisa, uma CÃlula Experimental (CE) de ResÃduos SÃlidos Urbanos (RSU) foi instalada numa Ãrea nÃo utilizada do Aterro SanitÃrio Metropolitano Oeste de Caucaia (ASMOC), RegiÃo Metropolitana de Fortaleza, com o objetivo de se estudar o comportamento de gramÃneas na sua superfÃcie, visando a reduÃÃo das emissÃes de CH4 e CO2 para a atmosfera e a produÃÃo de biomassa vegetal. As estimativas das emissÃes de gases foram realizadas por meio de ensaios com placa de fluxo estÃtico na cobertura convencional (branco) e nas coberturas cultivadas, alÃm das mediÃÃes feitas no dreno; todos em duas campanhas. Os cultivos de capim MombaÃa, Massai, Andropogon, Buffel e da grama Bermuda foram avaliados com relaÃÃo as caracterÃsticas morfogÃnicas, estruturais, produtivas e nutricionais. A Ãrea que recebeu a CE foi previamente estudada por meio do reconhecimento do perfil estratigrÃfico do subsolo e do nÃvel d‟Ãgua, caracterizaÃÃo dos solos em termos geofÃsicos (granulometria, limites de consistÃncia, compactaÃÃo Proctor Normal, permeabilidade à Ãgua) e quanto à fertilidade. Os RSU foram estudados quanto à composiÃÃo gravimÃtrica, densidade aparente, teor de umidade e seu lixiviado analisado do ponto de vista fÃsico-quÃmico. Os gases emitidos pelo dreno, na primeira campanha (1ÂC) foram compostos, em mÃdia, por 14,7% de CO2, 8,0% de CH4, 11,4% de O2 e 65,9% de outros gases. Na segunda campanha (2ÂC) houve um aumento na concentraÃÃo (%) dos dois principais gases de interesse (CO2: 0,3 vezes e CH4: 0,5 vezes) e reduÃÃo na concentraÃÃo dos demais (O2: 0,2 vezes e OG: 0,1 vezes): 19,0% de CO2, 11,8% de CH4, 8,7% de O2 e 60,4% de outros gases. Os gases emitidos pela cobertura (branco) foram (em %) menores que os emitidos pelo dreno, mostrando retenÃÃo: 1ÂC = 11,6% de CO2, 6,5% de CH4, 9,1% de O2 e 72,7% de outros gases; 2ÂC = 14,9% de CO2, 9,4% de CH4, 7,2% de O2 e 68,5% de outros gases. Em relaÃÃo aos fluxos mÃssicos houve aumento entre as campanhas (mÃdia): 2,5 x 10-3 e 3,6 x 10-3 g/m2.s de CH4 (1ÂC e 2ÂC, respectivamente), 1,2 x 10-2 e 1,5 x 10-2 g/m2.s de CO2 (1ÂC e 2ÂC). Os fluxos volumÃtricos foram (mÃdia): 4,0 x 10-6 e 5,7 x 10-6 m3/m2.s de CH4 (1ÂC e 2ÂC) e 7,0 x 10-6 e 8,8 x 10-6 m3/m2.s de CO2 (1ÂC e 2ÂC). Cabe observar que os fluxos estiveram dentro dos intervalos da literatura. Em relaÃÃo aos cultivos, observou-se que mesmo colocadas sobre solo tÃpico de aterro sanitÃrio e sem tratamento especial na cobertura ou no cultivo, as sementes dos quatro capins estudados e da grama Bermuda apresentaram germinaÃÃo dentro dos prazos biolÃgicos previstos. Assim, houve sobrevivÃncia dessas espÃcies sobre o solo do aterro sanitÃrio, porÃm com indicadores de desenvolvimento vegetal menores em relaÃÃo a literatura, contribuindo para isso o efeito negativo da extrema compactaÃÃo da cobertura e o baixo grau de fertilidade do solo. Cada cultivo teve uma capacidade diferente de impedir as emissÃes dos gases pela cobertura. Em ordem decrescente, observou-se (mÃdia): MombaÃa (2,6 e 3,8% de CH4 na 1ÂC/2ÂC; 4,6 e 6,0% de CO2 na 1ÂC/2ÂC), Massai (2,0 e 2,8% de CH4; 3,5 e 4,5% de CO2), Andropogon (1,1 e 1,5% de CH4; 1,9 e 2,5% de CO2), Bermuda (0,9 e 1,3% de CH4; 1,6 e 2,0% de CO2) e capim Buffel (0,4 e 0,6% de CH4; 0,5 e 0,6% de CO2). Os fluxos mÃssicos e volumÃtricos tambÃm foram menores no solo cultivado com capim MombaÃa e maiores no capim Buffel e isso manteve relaÃÃo com as principais caracterÃsticas morfogÃnicas, estruturais, produtivas e nutricionais utilizadas na avaliaÃÃo da sobrevivÃncia e desenvolvimento dos cultivos.
An Urban Solid Waste (USW) Experimental Cell (EC) was set up in an unused area of the West Metropolitan Landfill in Caucaia (ASMOC), in the Metropolitan Region of Fortaleza, with the aim of studying the behavior of different grasses planted on its cover layer in order to reduce atmospheric emissions of CO2 and CH4 and for the production of plant biomass. Gas emissions were tested with static flow plates on the normal cover layer (blank) and on the planted areas, in addition to the measurements taken on the landfill drainage. All measurements were made in two different campaigns. The morphogenesis, structural, productive and nutritional features of the Mombasa, Massai, Andropogon, Buffel and Bermuda grasses were evaluated. The area on which the EC was located was studied prior to the seeding, including a survey of the subsoil stratigraphic profile and groundwater levels, a geophysical soil characterization (grain size, Atterberg limits, normal Proctor compaction, water permeability) and fertility. The USW was studied for its gravimetric composition, density and moisture content and its leachate was analyzed from a physical and chemical perspective. The gases emitted by the drainage in the first campaign (C1) were composed on average by 14.7% CO2, 8.0% CH4, 11.4% O2, and 65.9% of other gases. In the second campaign (C2) there was an increase in the concentration (%) of the two main gases of interest (CO2: 0.3 times; CH4: 0.5 times) and a reduction in the concentration of the others (O2: 0.2 times, and other gases 0.1 times), with the following concentrations: CO2 19.0%, CH4 11.8%, O2 8.7%, and 60.4% of other gases. The gas emissions of the normal cover layer (blank) were lower than those of the drainage, showing a certain retention: C1: CO2 11.6%, CH4 6.5%, O2 9.1% and 72.7% of other gases; C2: CO2 14.9%, CH4 9.4%, O2 7.2% and 68.5% of other gases. Regarding the mass flows, there was an increase between the two campaigns (mean values): 2.5 x 10-3 and 3.6 x 10-3 g/m2.s of CH4 (C1 and C2, respectively), and 1.2 x 10-2 and 1.5 x 10-2 g/m2.s of CO2 (also for C1 and C2, respectively). The volumetric flows were the following (mean values): 4.0 x 10-6 and 5.7 x 10-6 m3/m2.s of CH4 (C1 and C2); and 7.0 x 10-6 and 8.8 x 10-6 m3/m2.s of CO2 (C1 and C2). The flows were within the ranges reported in the literature. Regarding the grass crops, it was observed that even though they were planted on a typical landfill soil without any special soil or cultivation treatment, the seeds of all five studied grasses germinated within the expected biological times. These species survived on the soil of the landfill yet presented smaller plant development indicators than those reported in the literature. The negative effect of an extreme soil compaction and low soil fertility contributed to such lower developmental results. Each crop showed a different ability to prevent gas emissions through the cover layer. We present them in descending order (mean values), namely: Mombasa (2.6% and 3.8% of CH4 in C1/C2, and 4.6% and 6.0% of CO2 in C1/ C2); Massai (2.0% and 2.8% of CH4, and 3.5% and 4.5% of CO2); Andropogon (1.1% and 1.5% of CH4, 1.9% and 2.5% of CO2); Bermuda (0.9% and 1.3% of CH4, 1.6% and 2.0% of CO2); and Buffel (0.4% and 0.6% of CH4, 0.5% and 0.6% of CO2). The volumetric and mass flows were lower in the soil planted with Mombasa grass and higher in that planted with Buffel. This was related to the main morphogenesis, structural, nutritional and productive features used in the assessment of crop survival and development.
Makaveckas, Tomas. "Rekultivuotų sąvartynų, esančių Kauno rajone, dengiamojo sluoksnio tyrimas." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20120530_124911-36493.
Full textThe most popular method of waste management not only in the world, but also in Lithuania, remains depositing waste in landfills. In Lithuania (according to the 2009 data) 90.6% of waste was deposited at the landfills. This work discusses the installation of the landfill, the procedures and recommendations of creating the final landfill covers. There was performed a research on four closed landfills in Kaunas district (Digriai, Gaižėnėliai, Miškiniai and Ilgakiemis) to find out the condition of landfill’s cover layer. According to the findings, conclusions about the condition of these landfills are made. The results show that not all landfills undergo recultivation in accordance with the rules and guidelines. Preservation of the clean environment, ecology and reduction of the environmental pollution is the major concern for the last decades and the most relevant question remains the proper waste management, optimization of the landfill network (as well as the complete abandonment of the landfills, because of different waste management policies, such as incineration). Still, Lithuania has to deal with old and disused landfills, so the proper way to close the landfill must be chosen, because poorly recultivated landfill can cause large ecological catastrophe.
ARAUJO, Pabllo da Silva. "Análise do desempenho de um solo compactado utilizado na camada de cobertura de um aterro sanitário." Universidade Federal de Campina Grande, 2017. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/373.
Full textMade available in DSpace on 2018-04-12T20:13:37Z (GMT). No. of bitstreams: 1 PABLLO DA SILVA ARAUJO – DISSERTAÇÃO (PPGECA) 2017.pdf: 6927035 bytes, checksum: 9da5e680617a44b7eff618d9c75ffcf3 (MD5) Previous issue date: 2017-03-29
Capes
Uma das formas de tratamento de Resíduos Sólidos Urbanos (RSU) que mais se destaca são os aterros sanitários, que possui como vantagens, a facilidade de operação, menor custo quando comparado às outras técnicas (triagem, tratamento biológico, incineração, entre outras) e a existência de um plano de monitoramento contínuo. O aterro sanitário utiliza uma camada de cobertura final de solo compactado com a finalidade de isolar os resíduos do meio externo, minimizar a entrada de água para o interior do maciço sanitário, reduzir as emissões de gases para a atmosfera, evitar a proliferação de roedores e vetores de doença, entre outras. As Normas Brasileiras não regulamentam o tipo de solo a ser utilizado, nem técnicas de execução de camadas de coberturas de aterros, nem a forma de monitoramento, possuindo como única exigência o atendimento de um coeficiente mínimo de permeabilidade à água. Diante disso, este trabalho tem como objetivo analisar o desempenho do solo compactado utilizado na camada de cobertura final de um aterro de resíduos sólidos, tendo como campo experimental o Aterro Sanitário de Campina Grande/PB. Para isso foi realizada a caracterização física do solo utilizado na camada, verificação de seus parâmetros quanto à viabilidade para uso em aterros sanitários, análise físico-química e mineralógica, obtenção da curva de retenção de água no solo e análise dos pontos experimentais da curva aos ajustes propostos na literatura. Foi verificado o comportamento do solo frente aos processos de umedecimento/secagem e expansão/contração, observação da relação entre a umidade ótima de compactação e o ponto de entrada generalizada de ar (GAE), além da verificação da variação da umidade do solo em um perfil experimental da camada de cobertura por meio de sensores capacitivos. Os resultados demonstraram que, o solo possui permeabilidade à água admissível para uso em aterros sanitários segundo as normas nacionais e internacionais. O ajuste da curva de Van Genuchten aos pontos experimentais da curva de retenção atendeu às condições de concordância a partir dos parâmetros estatísticos analisados. A umidade ótima de compactação do solo possui valor próximo ao GAE, onde se inicia a dessaturação do solo, no qual o ar começa a entrar nos maiores poros formados pela drenagem da água e perda de umidade. Deve-se realizar a compactação do solo na energia proctor normal obedecendo à adição de água suficiente para atingir a umidade ótima, em um intervalo aceitável de ± 2%. Pode-se concluir que, o tipo de camada de cobertura final (solo argiloso compactado) utilizado é inadequado para a região do aterro devido às características climatológicas a que o solo está submetido e a ausência de proteção vegetal superficial. A aplicação da energia proctor normal para compactação do solo da camada de cobertura do aterro sanitário proporciona condições favoráveis à redução da permeabilidade à água do solo. A curva de retenção de água no solo da camada de cobertura do aterro sanitário apresenta comportamento unimodal e possui características de um solo argiloso. A utilização de sensores capacitivos se mostrou como uma técnica eficaz para aquisição automática da umidade do solo e verificação da sua variação ao longo do tempo, bem como, o monitoramento da sucção pela espessura da camada de cobertura final de solo compactado.
One of the forms of treatment of Municipal Solid Waste (MSW) is the landfill, which has the advantages of ease of operation, lower cost when compared to other techniques (sorting, biological treatment, incineration, among others) and the existence of a continuous monitoring plan. The landfill uses a final cover layer of compacted soil to isolate residues from the external environment, minimize the entry of water into the landfill, reduce the emission of gases into the atmosphere, prevent the proliferation of rodent and vectors of disease, among others. The Brazilian Regulations do not regulate the type of soil to be used, nor techniques for implementing layers of landfills, nor the form of monitoring, having as sole requirement the attendance of a minimum coefficient of water permeability. The objective of this work is to analyze the performance of the compacted soil used in the final cover layer of a landfill, with the Landfill Campina Grande/PB as an experimental field. The physical characterization of the soil used in the layer, verification of its parameters regarding the feasibility for use in landfills, physical-chemical and mineralogical analysis, obtaining the water retention curve in the soil and analysis of the experimental points of the curve were performed adjustments proposed in the literature. The behavior of the soil was verified in relation to the wetting/drying and swell/contraction processes, observation of the relation between the optimum compaction humidity and the Generalized Air Entry (GAE), besides the verification of soil moisture variation in one experimental profile of the cover layer by means of capacitive sensors. The results showed that the soil has permeability to water admissible for use in landfills according to national and international standards. The adjustment of the Van Genuchten curve to the experimental points of the retention curve met the conditions of agreement from the statistical parameters analyzed. The optimum soil compaction humidity has a value close to GAE, where soil desaturation begins, in which the air begins to enter the larger pores formed by water drainage and moisture loss. Soil compaction must be carried out in normal proctor energy by adding sufficient water to achieve optimum moisture, within an acceptable range of ± 2%. It can be concluded that the type of final cover layer (compacted clay soil) used is unsuitable for the landfill region due to the climatological characteristics to which the soil is subjected and the absence of surface vegetation protection. The application of normal proctor energy to soil compaction of the landfill cover layer provides favorable conditions for the reduction of soil water permeability. The water retention curve in the soil of the final cover layer of the landfill presents unimodal behavior and has characteristics of a clay soil. The use of capacitive sensors proved to be an effective technique for automatic acquisition of soil moisture and verification of its variation over time, as well as the monitoring of suction by the thickness of the final cover layer of compacted soil.
Oliveira, Ana Carolina Eugênio de. "Avaliação de emissões fugitivas de biogás na camada de cobertura do aterro sanitário da CTR de Nova Iguaçu e do Lixão de Seropédica, Rio de Janeiro." Universidade do Estado do Rio de Janeiro, 2013. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=7647.
Full textIn Brazil, according to the timeframe given by the National Policy of Solid Waste, by 2014, every dump will be eradicated and every municipal solid waste generated will be deposited in landfills. Currently, the landfill projects provide an opportunity for the market, which is a source of energy. A parameter of control of the air pollution caused by landfills is called cover layers. In this context, it is important the study of the cover layers to avoid or minimized the air pollution due to gases generated in landfills, which is the link between the solid waste and the atmosphere. This research addresses the behavior of the gases in relation to the cover layers on the CTR Nova Iguaçu and Dump of Seropédica. Six test trials of the Flux chamber, pressure measurement and concentration of gases in the soil-residue contact and emissions of gases through the drains, in addition to in situ soil analysis and laboratory analysis. The tests trials were performed from October, 2012 to November, 2012. The results indicated no gas flow through the cover layer, which has a thickness of 1.10 m, of the dump of Seropédica, where the gas flow was only encountered through the drains. In CTR Nova Iguaçu, the gas flow was almost inexistent, even having a cover layer of thickness of 0.8 m.
Silva, Eduardo Gaiotto Marques da. "Estudo Experimental de Gases em Camadas de Cobertura no Aterro de Nova Iguaçu - RJ." Universidade do Estado do Rio de Janeiro, 2011. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=8183.
Full textThis research presents a literature review on methane emissions from landfills, the concepts of landfill gas generation, the landfill internal gas flow, introduces the methods of measurement of gases "in situ", types of final landfill coverage and the methane oxidation in the cover layer. The research also purposes to measure greenhouse gas emissions and to evaluate the infiltration of rainwater through the landfill cover layer of the CTR Nova Iguaçu. Measurements were made in the months from July to November 2010, the existing monolithic cover layer and another built on a capillary barrier. Sensors to measure temperature and humidity were installed in two layers in depth. Plate assays were performed to measure the flow of the gas composition and flow through the two types of layers, and evaluated two situations with the gas extraction wells active and off. The sensors have indicated that in times of low rainfall, the capillary barrier has superior efficacy to the monolithic layer, and with the intensification of rain, the moisture content measured on two types of layers increase, the capillary barrier and the gradient established between sensors decreases, indicating a possible trend to saturation of capillary barrier. However, with the stoppage of rain, recovers and returns to its initial condition. The results of measurements of gases demonstrated the efficiency of extraction of gas when activated, resulting in near zero emissions of methane and carbon dioxide in the two types of layers. However, when the system is off, the emissions through the monolithic layer is about three times larger than through the capillary barrier.
Rios, Daiane do Carmo. "Aplica??o de dois modelos de balan?o h?drico para estudo de Camada de cobertura de aterro sanit?rio utilizando solo e Res?duo da constru??o civil (RCC)." Universidade Estadual de Feira de Santana, 2016. http://localhost:8080/tede/handle/tede/473.
Full textMade available in DSpace on 2017-07-12T01:22:06Z (GMT). No. of bitstreams: 1 Disserta??o Daiane do Carmo.pdf: 4697687 bytes, checksum: a37b7f9d37bd854f2fb6862074c46fd4 (MD5) Previous issue date: 2016-09-14
Funda??o de Amparo ? Pesquisa do Estado da Bahia - FAPEB
The water balance is an important aspect on development of a landfill project, and the choice of material for the cover layer will influence the generation of percolated liquids. Considering the composition and characteristics of cover layers, it becomes necessary the conventional material substitution. Therefore, this study compared the construction civil waste (CCW) to the soil from the university campus - UEFS in Feira de Santana/BA as used in evapotranspiration cover layer for landfill, using the water balance models Fenn et al. (1975) and S?o Mateus et al. (2012). The results showed that both materials have the same behavior for the Fenn et al. (1975) method, where the CCW generates less liquid than MSW to the ground. By the method of S?o Mateus et al. (2012), the CCW and the soil allow the passage of water to the MSW in different behaviors, and the soil promoted greater liquid infiltration, about 95.5% higher than the CCW. When the methods were compared, S?o Mateus et al. (2012) presented higher water infiltration to the MSW in the simulation with the soil, in relation to the method of Fenn et al. (1975), and smaller with the CCW, this occurs due to the distinction of the input parameters for the materials, highlighting the influence of the permeability coefficient in the water balance.
O balan?o h?drico ? parte importante no processo de elabora??o de um projeto de aterro sanit?rio, visto que a escolha do material para a camada de cobertura influenciar? na gera??o de l?quidos percolados. Tendo em vista a necessidade da utiliza??o de materiais para a composi??o das diversas camadas dos sistemas de cobertura, torna-se indispens?vel o estudo de materiais alternativos para a substitui??o dos materiais usados originalmente. Para tanto, este trabalho comparou o res?duo da constru??o civil (RCC) com o solo do campus universit?rio da UEFS em Feira de Santana/BA utilizados como camada de cobertura para aterro sanit?rio, utilizando os modelos de balan?o h?drico de Fenn et al. (1975) e S?o Mateus et al. (2012). Os resultados mostraram que, pelo m?todo de Fenn et al. (1975), ambos os materiais possuem comportamento semelhante, sendo que o RCC infiltrou menor quantidade de ?gua para o res?duo s?lido urbano (RSU) do que o solo. Pelo m?todo de S?o Mateus et al. (2012), o RCC e o solo permitem a passagem de ?gua para o RSU em comportamentos distintos, sendo que o solo promoveu maior infiltra??o de l?quidos, cerca de 95,5% maior do que o RCC. Quando comparados os m?todos, S?o Mateus et al. (2012) apresentou maior infiltra??o de ?gua para o RSU na simula??o com o solo, com rela??o ao m?todo de Fenn et al. (1975), e menor com o RCC, isto ocorre devido ? distin??o dos par?metros de entrada para os materiais, destacando-se a influ?ncia do coeficiente de permeabilidade no balan?o h?drico.
Thorstad, Patricia Ann. "Field performance of a geosynthetic clay liner (GCL) used as the hydraulic barrier layer in a landfill cover in Southwestern Wisconsin." 2002. http://catalog.hathitrust.org/api/volumes/oclc/50870894.html.
Full textTypescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 116-122).
Book chapters on the topic "Landfill cover layer"
Maeda, N., J. Tsukahara, K. Endo, M. Kamon, and T. Katsumi. "Seashore MSW Landfill Using Drainage Layer and Thick Soil Cover—Leachate Containment and Post-closure Land Use." In Environmental Science and Engineering, 804–11. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2221-1_91.
Full textHe, Pin-Jing. "Full-Scale Practice of Ecologically Based Landfill of Municipal Solid Waste: to Accecelerate The Biological Conversion Inside Landfill and Cover Layers." In Advances in Environmental Geotechnics, 217–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04460-1_14.
Full textGoldstein, Inge F., and Martin Goldstein. "Cancer From The Landfill?" In How Much Risk? Oxford University Press, 2002. http://dx.doi.org/10.1093/oso/9780195139945.003.0013.
Full textMaciel, F., R. Lopes, and J. Jucá. "Evaluation of landfill gas emission in experimental cover layers in Brazil." In Unsaturated Soils, 1413–18. CRC Press, 2010. http://dx.doi.org/10.1201/b10526-223.
Full text"Water infiltration in final cover layer of landfills in northeast region of Brazil." In Advances in Unsaturated Soils, 261–66. CRC Press, 2013. http://dx.doi.org/10.1201/b14393-33.
Full textLopes, R., M. Alves, and J. Jucá. "Water infiltration and methane emission through three different cover layers of an experimental Municipal Waste Landfill at Muribeca, Recife, Pernambuco, Brazil." In Unsaturated Soils, 1407–12. CRC Press, 2010. http://dx.doi.org/10.1201/b10526-222.
Full textConference papers on the topic "Landfill cover layer"
Jucá, J. F. T., and F. J. Maciel. "Gas Permeability of a Compacted Soil Used in a Landfill Cover Layer." In Fourth International Conference on Unsaturated Soils. Reston, VA: American Society of Civil Engineers, 2006. http://dx.doi.org/10.1061/40802(189)128.
Full textCoo, Jason L., Zac P. S. So, and Charles W. W. Ng. "Physical and Numerical Modeling of an Earthen Three-Layer Landfill Cover System under One-Dimensional Infiltration." In Second Pan-American Conference on Unsaturated Soils. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784481684.026.
Full textWysocka, Małgorzata E., and Katarzyna Zabielska-Adamska. "Impact of Protective Barriers on Groundwater Quality." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.063.
Full textZabielska-Adamska, Katarzyna, and Mariola Wasil. "Tensile Strength of Barrier Material." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.064.
Full text