Journal articles on the topic 'Landing gear shock-absorber'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Landing gear shock-absorber.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sartor, P., K. Worden, R. K. Schmidt, and D. A. Bond. "Bayesian sensitivity analysis of flight parameters that affect main landing gear yield locations." Aeronautical Journal 118, no. 1210 (2014): 1481–97. http://dx.doi.org/10.1017/s0001924000010150.
Full textDinc, Ali, Faruk Yildiz, Junkun Ma, et al. "Dynamics of Oleo-Pneumatic Landing Gear Systems for Carrier-Based Unmanned Aerial Vehicles." Aerospace 12, no. 2 (2025): 127. https://doi.org/10.3390/aerospace12020127.
Full textLe, Quang-Ngoc, Hyeong-Mo Park, Yeongjin Kim, Huy-Hoang Pham, Jai-Hyuk Hwang, and Quoc-Viet Luong. "An Intelligent Control and a Model Predictive Control for a Single Landing Gear Equipped with a Magnetorheological Damper." Aerospace 10, no. 11 (2023): 951. http://dx.doi.org/10.3390/aerospace10110951.
Full textKang, Byung-Hyuk, Jai-Hyuk Hwang, and Seung-Bok Choi. "A New Design Model of an MR Shock Absorber for Aircraft Landing Gear Systems Considering Major and Minor Pressure Losses: Experimental Validation." Applied Sciences 11, no. 17 (2021): 7895. http://dx.doi.org/10.3390/app11177895.
Full textKiselev, A. V., E. V. Poznyak, and M. M. Kruchinin. "APPLICATION OF A GENETIC ALGORITHM FOR OPTIMIZATION OF THE PNEUMOHYDRAULIC SHOCK ABSORBER OF THE HELICOPTER LANDING GEAR." Spravochnik. Inzhenernyi zhurnal, no. 336 (March 2025): 36–45. https://doi.org/10.14489/hb.2025.03.pp.036-045.
Full textYadav, D., and R. P. Ramamoorthy. "Nonlinear Landing Gear Behavior at Touchdown." Journal of Dynamic Systems, Measurement, and Control 113, no. 4 (1991): 677–83. http://dx.doi.org/10.1115/1.2896474.
Full textWu, Wei Guo, Zhen Tao Wang, and Teng Jia. "Nonlinear Dynamic Response Analysis of Aircraft Landing Gear with Finite Element Modeling." Applied Mechanics and Materials 826 (February 2016): 23–27. http://dx.doi.org/10.4028/www.scientific.net/amm.826.23.
Full textLi, Long Shuang, Hong Nie, and Xin Xu. "Simulation and Experiment on Landing Gear Component Noise." Applied Mechanics and Materials 170-173 (May 2012): 3454–59. http://dx.doi.org/10.4028/www.scientific.net/amm.170-173.3454.
Full textLiu, Wenbin, and Youshan Wang. "Improved Multi-Body Dynamic Simulation of Landing Gear Drop Test Incorporating Structural Flexibility and Bearing Contact." Aerospace 11, no. 7 (2024): 543. http://dx.doi.org/10.3390/aerospace11070543.
Full textViana, Felipe A. C., Valder Steffen Jr., Marcelo A. X. Zanini, Sandro A. Magalhães, and Luiz C. S. Góes. "Identification of a Non-Linear Landing Gear Model Using Nature-Inspired Optimization." Shock and Vibration 15, no. 3-4 (2008): 257–72. http://dx.doi.org/10.1155/2008/246271.
Full textZhu, Yu Ming, and Hai Cheng Yang. "Computer-Aided Multi-Domain Unified Modeling and Simulation for Aircraft Landing Gear." Advanced Materials Research 421 (December 2011): 392–96. http://dx.doi.org/10.4028/www.scientific.net/amr.421.392.
Full textYazici, Hakan, and Mert Sever. "Active control of a non-linear landing gear system having oleo pneumatic shock absorber using robust linear quadratic regulator approach." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 232, no. 13 (2017): 2397–411. http://dx.doi.org/10.1177/0954410017713773.
Full textMaeda, Takao, Masatsugu Otsuki, and Tatsuaki Hashimoto. "Protection against overturning of a lunar-planetary lander using a controlled landing gear." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 2 (2017): 438–56. http://dx.doi.org/10.1177/0954410017742931.
Full textWei, Xiao Hui, Si Jia Yu, Hong Nie, Ming Zhang, and Yi Zhou Shao. "Design and Dynamic Analysis of Magnetorheological Shock Absorber Based on the Piezoelectric Technology." Applied Mechanics and Materials 397-400 (September 2013): 505–10. http://dx.doi.org/10.4028/www.scientific.net/amm.397-400.505.
Full textLiu, Ji Hong, Ying Zhong Pang, and Yu Ming Zhu. "Multi-Domain Unified Modeling and Simulation for Aircraft Landing Gear Using Modelica." Advanced Materials Research 311-313 (August 2011): 2457–60. http://dx.doi.org/10.4028/www.scientific.net/amr.311-313.2457.
Full textShams, Taimur Ali, Syed Irtiza Ali Shah, Muhammad Ayaz Ahmad, Kashif Mehmood, Waseem Ahmad, and Syed Tauqeer ul Islam Rizvi. "Selection Methodology of an Electric Actuator for Nose Landing Gear of a Light Weight Aircraft." Applied Sciences 10, no. 23 (2020): 8730. http://dx.doi.org/10.3390/app10238730.
Full textSunny, Okemini Uguzo, Nwevo Obinnaya, Chinemerem Gideon Japheth, Johnson Anamemena Nnaemeka, and Yekini Bello. "DESIGNED AND ANALYSIS OF AN SC-17M MAIN LANDING GEAR LOADING ACTION." FUTA JOURNAL OF ENGINEERING AND ENGINEERING TECHNOLOGY 16, no. 1 (2022): 20–26. http://dx.doi.org/10.51459/futajeet.2022.16.1.339.
Full textBelkin, A. E., and E. A. Nikitin. "Calculation of the Passenger Aircraft Landing Gear Shock Absorption System Exposed to Impact Loading." Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, no. 3 (146) (September 2023): 29–49. http://dx.doi.org/10.18698/0236-3941-2023-3-29-49.
Full textRahmani, Mohsen, and Kamran Behdinan. "Investigation on the effect of coulomb friction on nose landing gear shimmy." Journal of Vibration and Control 25, no. 2 (2018): 255–72. http://dx.doi.org/10.1177/1077546318774440.
Full textShi, Fenghui. "Multi-objective Optimization of Passive Shock Absorber for Landing Gear." American Journal of Mechanical Engineering 7, no. 2 (2019): 79–86. http://dx.doi.org/10.12691/ajme-7-2-4.
Full textShi, Fenghui, Warren Isaac Anak Dean, and Taikei Suyama. "Single-objective Optimization of Passive Shock Absorber for Landing Gear." American Journal of Mechanical Engineering 7, no. 3 (2019): 107–15. http://dx.doi.org/10.12691/ajme-7-3-1.
Full textJiao, Fujun. "Oil damping energy loss analysis of landing gear shock absorber." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 8 (2018): 3096–106. http://dx.doi.org/10.1177/0954410018793788.
Full textRośkowicz, Marek, and Piotr Leszczyński. "The Selected Problems of Studies of Aircraft Landing Gear." Research Works of Air Force Institute of Technology 39, no. 1 (2016): 91–102. http://dx.doi.org/10.1515/afit-2016-0020.
Full textSkorupka, Zbigniew, R. Kajka, R. Harla, et al. "Active Control of Landing Gear Shock Absorber Characteristic Using Magnetoreological Fluids." Solid State Phenomena 154 (April 2009): 195–201. http://dx.doi.org/10.4028/www.scientific.net/ssp.154.195.
Full textDİNÇ, Ali. "METERING PIN DIAMETER OPTIMIZATION OF AN AIRCRAFT LANDING GEAR SHOCK ABSORBER." Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 9, no. 2 (2021): 37–46. http://dx.doi.org/10.20290/estubtdb.900786.
Full textTang, Haihong, Panglun Liu, Jianbin Ding, Jinsong Cheng, Yiyao Jiang, and Bingyan Jinag. "Numerical Prediction of Fatigue Life for Landing Gear Considering the Shock Absorber Travel." Aerospace 12, no. 1 (2025): 42. https://doi.org/10.3390/aerospace12010042.
Full textZhu, Shi Xing, and Chan Juan Chen. "Study on Variable Universe Fuzzy PID Control for Landing Gear Based on MRF (Magneto-Rheological Fluid) Damper." Applied Mechanics and Materials 233 (November 2012): 66–71. http://dx.doi.org/10.4028/www.scientific.net/amm.233.66.
Full textDu, Siyuan, Changming Zhang, Zhiqiang Jia, and Ke Zhou. "Numerical simulation of Oleo-pneumatic Two-phase flow in variable shock absorber." Journal of Physics: Conference Series 2355, no. 1 (2022): 012029. http://dx.doi.org/10.1088/1742-6596/2355/1/012029.
Full textSonowal, Plabita, K. M. Pandey, and K. K. Sharma. "Design and static analysis of landing gear shock absorber of commercial aircraft." Materials Today: Proceedings 45 (2021): 6712–17. http://dx.doi.org/10.1016/j.matpr.2020.11.1032.
Full textLu, Jianmin, Wenzhong Nie, Yajian Ma, and Xiaoxuan Li. "Analysis Nonlinear mechanical characteristics analysis of a UAV landing gear shock absorber." Journal of Physics: Conference Series 1684 (November 2020): 012131. http://dx.doi.org/10.1088/1742-6596/1684/1/012131.
Full textWu, Wei-Guo, Fu-Rui Xiong, Jian-Qiao Sun, and Yong-Gang Leng. "Dynamic modeling of aircraft landing gear and multi-objective optimization with simple cell mapping method." Transactions of the Canadian Society for Mechanical Engineering 43, no. 1 (2019): 80–91. http://dx.doi.org/10.1139/tcsme-2017-0083.
Full textFang, Xingbo, Hu Chen, Xiaohui Wei, and Hong Nie. "Study on the Fast Extension Mechanism of Double-Cavity Shock Absorber with High-Pressure Piston." International Journal of Aerospace Engineering 2021 (April 21, 2021): 1–9. http://dx.doi.org/10.1155/2021/5539401.
Full textКапитанова, Людмила Валерьевна, та Виктор Иванович Рябков. "МЕТОД І ЗАСОБИ УТРИМАННЯ НАЗЕМНИХ ЗЛІТНО-ПОСАДКОВИХ ПЕРЕМІЩЕНЬ МОДИФІКАЦІЙ ЛІТАКІВ ТРАНСПОРТНОЇ КАТЕГОРІЇ НА РІВНІ ЇХ БАЗОВОГО ВАРІАНТА". Aerospace technic and technology, № 8 (25 грудня 2018): 10–17. http://dx.doi.org/10.32620/aktt.2018.8.02.
Full textBrewczyński, D., and G. Tora. "Analysis of Links Positions in Landing Gear Mechanism." International Journal of Applied Mechanics and Engineering 19, no. 3 (2014): 503–12. http://dx.doi.org/10.2478/ijame-2014-0033.
Full textPinello, Lucio, Omar Hassan, Marco Giglio, and Claudio Sbarufatti. "Preliminary Nose Landing Gear Digital Twin for Damage Detection." Aerospace 11, no. 3 (2024): 222. http://dx.doi.org/10.3390/aerospace11030222.
Full textEl Mir, Haroun, Stephen King, Martin Skote, Mushfiqul Alam, and Simon Place. "Landing Gear Health Assessment: Synergising Flight Data Analysis with Theoretical Prognostics in a Hybrid Assessment Approach." PHM Society European Conference 8, no. 1 (2024): 10. http://dx.doi.org/10.36001/phme.2024.v8i1.4085.
Full textLernbeiss, R., and M. Plöchl. "Simulation model of an aircraft landing gear considering elastic properties of the shock absorber." Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 221, no. 1 (2007): 77–86. http://dx.doi.org/10.1243/1464419jmbd63.
Full textTilley, D. G., and S. P. Tomlinson. "Computer Simulation of the Bi-Stable Valve in the A340 Landing Gear." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 210, no. 3 (1996): 261–70. http://dx.doi.org/10.1243/pime_proc_1996_210_369_02.
Full textLuong, Quoc-Viet, Quang-Ngoc Le, Jai-Hyuk Hwang, and Thi-My-Nu Ho. "6DOF Aircraft Landing Gear System with Magnetorheological Damper in Various Taxing and Touchdown Scenarios." Micromachines 16, no. 3 (2025): 355. https://doi.org/10.3390/mi16030355.
Full textWei, Xiao Hui, Yong Wei Ding, Hong Nie, and Yong Ping Li. "Discharge coefficient calculation method of landing gear shock absorber and its influence on drop dynamics." Journal of Vibroengineering 20, no. 7 (2018): 2550–62. http://dx.doi.org/10.21595/jve.2018.19049.
Full textAsthana, Chandra B., and Rama B. Bhat. "A Novel Design of Landing Gear Oleo Strut Damper Using MR Fluid for Aircraft and UAV’s." Applied Mechanics and Materials 225 (November 2012): 275–80. http://dx.doi.org/10.4028/www.scientific.net/amm.225.275.
Full textFeria Alanis, Aaron, Ahmed A. Sheikh Al-Shabab, Antonis F. Antoniadis, Panagiotis Tsoutsanis, and Martin Skote. "A Mixed-Elastohydrodynamic Lubrication Model of a Capped-T-Ring Seal with a Sectioned Multi-Material Film Thickness in Landing Gear Shock Absorber Applications." Fluids 9, no. 12 (2024): 271. http://dx.doi.org/10.3390/fluids9120271.
Full textSienicki, Jaroslaw, Wojciech Zórawski, Adam Dworak, Piotr Koruba, Piotr Jurewicz, and Jacek Reiner. "Cold spraying and laser cladding as an alternative to electroplating processes." Aircraft Engineering and Aerospace Technology 91, no. 2 (2019): 205–15. http://dx.doi.org/10.1108/aeat-01-2018-0071.
Full textMendoza Lopetegui, José Joaquín, Gianluca Papa, Marco Morandini, and Mara Tanelli. "Shock Absorber Leakage Impact on Aircraft Lateral Stability During Ground Handling Maneuvers." Journal of Guidance, Control, and Dynamics, February 1, 2023, 1–17. http://dx.doi.org/10.2514/1.g006933.
Full textKiefer, J., M. Ward, and M. Costello. "Rotorcraft Hard Landing Mitigation Using Robotic Landing Gear." Journal of Dynamic Systems, Measurement, and Control 138, no. 3 (2016). http://dx.doi.org/10.1115/1.4032286.
Full textArık, Ahmet Enes, and Boğaç Bilgiç. "Fuzzy control of a landing gear system with oleo-pneumatic shock absorber to reduce aircraft vibrations by landing impacts." Aircraft Engineering and Aerospace Technology, July 29, 2022. http://dx.doi.org/10.1108/aeat-01-2022-0028.
Full textKim, Tae-Uk, JeongWoo Shin, and Sang Wook Lee. "Design and Testing of a Crashworthy Landing Gear." ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg 3, no. 4 (2017). http://dx.doi.org/10.1115/1.4036663.
Full textSumerin, A. A., and G. A. Shcheglov. "Simulation of the aircraft landing gear legs with the plastically deformable shock absorbers." Engineering Journal: Science and Innovation, no. 6 (138) (June 2023). http://dx.doi.org/10.18698/2308-6033-2023-6-2284.
Full text"Effects of Spring and Damper Elements in Aircraft Landing Gear Dynamics." International Journal of Recent Technology and Engineering 8, no. 5 (2020): 4265–69. http://dx.doi.org/10.35940/ijrte.d9247.018520.
Full textAhmad, Muhammad Ayaz, Syed Irtiza Ali Shah, Taimur Ali Shams, Ali Javed, and Syed Tauqeer ul Islam Rizvi. "Comprehensive design of an oleo-pneumatic nose landing gear strut." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, December 13, 2020, 095441002097937. http://dx.doi.org/10.1177/0954410020979378.
Full text