Dissertations / Theses on the topic 'Landsat and ASTER Data'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Landsat and ASTER Data.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Stolz, Tara Alexandra. "Geological Mapping of Orhon, Tariat, and Egiin Dawaa, Central Mongolia, through the Interpretation of Remote Sensing Data." Wright State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=wright1221081955.
Full textBiro, Turk Khalid Guma. "Geovisualisation of Multi-Temporal Satellite Data for Landuse/Landcover Change Analysis and its Impacts on Soil Properties in Gadarif Region, Sudan." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-83390.
Full textMehrere Jahrzehnte intensiven Trockenfeldbaus in der Region von Gadarif, welche sich im östlichen Teil des Sudans befindet, führten hauptsächlich aufgrund von landwirtschaftlicher Expansion, politischen Beschlüssen der Regierung und Naturkatastrophen wie Trockenheit zu einer raschen Veränderung der Landnutzung und Landbedeckung. Das wesentliche Ziel dieser Dissertation war es, die Degradation des Landes, sowie die Auswirkungen von landwirtschaftlicher Expansion auf die Landbedeckung, den Boden und den Pflanzenbau im Untersuchungsgebiet, welches Teile der afrikanischen Sahelzone beinhaltet, abzuschätzen. Zur Analyse und Beobachtung der Veränderungen der Landnutzung und Landbedeckung wurden multi-temporale Landsat-Daten der Jahre 1979, 1989 und 1999 sowie ASTER-Daten aus dem Jahr 2009 genutzt, welche eine Fläche von schätzungsweise 1200 km² abdecken. Um Veränderungen von Landnutzung und Landbedeckung aus Satellitenbilddaten zu bestimmen, wurde ein auf Post-Klassifikation basierendes Vergleichsverfahren angewandt. Sechs Landnutzungs- und Landbedeckungsklassen, welche die Namen bewirtschaftetes Land, brach liegendes Land, Waldgebiet, Ödland, besiedeltes Land und Wasserfläche tragen, wurden während des Klassifikationsprozesses bestimmt. Für die vier Aufnahmezeitpunkte der Satellitendaten lag die allgemeine Klassifikationsgenauigkeit zwischen 86 % und 92 %. Während des dreißigjährigen Untersuchungszeitraums fand eine beträchtliche Veränderung der Landnutzungs- und Landbedeckungsstruktur statt. Bewirtschaftete Flächen nahmen in ihrem Anteil signifikant zu und bedeckten innerhalb des Zeitraums von 1979 bis 2009 81 % der früheren Waldgebiete. Der Anteil von brach liegendem Land nahm lediglich während des Zeitraums von 1989 bis 1999 zu. Besiedelte Gebiete breiteten sich über die drei Jahrzehnte kontinuierlich aus und wuchsen innerhalb des Zeitraums von 1979 bis 1989 um eine Fläche von 23 km², sowie um 21 km² zwischen 1989 und 1999 und um 27 km² in dem Zeitabschnitt 1999 – 2009. Eine detaillierte Karte zur Landnutzung und Landbedeckung des Untersuchungsgebiets wurde mittels der Nutzung dual polarisierter (HH und HV) TerraSAR-X Daten aus dem Jahr 2009 erzeugt. Die verschiedenen Landnutzungen und Landbedeckungen im Beobachtungsgelände wurden durch die Anwendung eines objektorientierten Klassifikationsansatzes analysiert. Um Bildobjekte zu erzeugen, wurde für diesen Zweck die auf einer mehrfachen Auflösung basierende Segmentierung der Software Definiens genutzt. Das Werkzeug Feature Space Optimisation wurde für die Optimierung der Attribute der TerraSAR-X Bilder angewandt, damit eine ideale Unterscheidungsfähigkeit entlang der Klassen für die Kartierung der Landnutzungen und Landbedeckungen erreicht werden kann. Zusätzlich zu jenen Klassen, welche mittels optischer Daten abgeleitet wurden, ergaben sich aus SAR-Daten noch die nachfolgenden Landnutzungen und Landbedeckungen: Abgeerntetes Land, Fels, Besiedlung 1 (Gebäude mit landestypischer Bedachung) und Besiedlung 2 (Gebäude mit Betondach). Die Koeffizienten der Rückstreuung entlang der Polarisationen HH und HV waren für einige Klassen unterschiedlich. Der günstigste Trennungsabstand der getesteten spektralen, formgebenden und texturalen Features ergab verschiedene Abweichungen zwischen den bestimmten Klassen der Landnutzung und Landbedeckung. Die Klassifikationsmaßnahmen ergaben eine Gesamtgenauigkeit von 84 % mit einem Kappa-Wert von 0.82. Genauigkeitsunterschiede entlang der Klassen wurden minimal gehalten. Seit über sechs Jahrzehnten wird in der Region Gadarif maschinenbetriebener Trockenfeldbau ausgeübt. In Folge dessen fand eine beträchtliche Abholzung und Überweidung sowie eine schwerwiegende Bodendegradation aufgrund des stetigen konventionellen Feldbaus statt. Um die Auswirkungen der Veränderung von Landnutzung und Landbedeckung auf die ausgewählten Bodenbeschaffenheiten auszuwerten, wurden drei Haupttypen der Landnutzung und Landbedeckung für die weitere Untersuchung ausgewählt: Bewirtschaftetes Land, brach liegendes Land, und Waldgebiet. Zusätzlich zu den Referenzbodenprofilen wurden außerdem für jeden Landnutzungs- und Landbedeckungstyp auf je zehn Probeflächen Bodenproben in zwei Tiefen entnommen. Bei diesen Bodenproben wurden zahlreiche Bodeneigenschaften analysiert, wie etwa Textur, Bodendichte (BD), organischer Materialgehalt (OM), pH-Wert des Bodens, elektrische Leitfähigkeit (EC), Adsorptionsgeschwindigkeit von Natrium (SoAR), Phosphorgehalt (P) sowie Kaliumgehalt (K). Labortests ergaben, dass die Bodeneigenschaften signifikant durch die Veränderungen der Landnutzung und Landbedeckung beeinflusst werden. Innerhalb der verschiedenen Landnutzungs- und Landbedeckungstypen variierte der Tongehalt in den Deckschichten (0 – 5 cm und 5 – 15 cm) zwischen 59 % und 65 %, wohin gegen sich die Lehmanteile von 27 % bis 37 % bewegten. Bodendichte, organischer Materialgehalt und Phosphorgehalt zeigten signifikant unterschiedliche Werte bei den drei Typen der Landnutzung und Landbedeckung (p < 0.05). Der pH-Wert des Bodens war signifikant verschieden zwischen bewirtschaftetem Land und Waldgebiet zum einen, und zwischen brach liegendem Land und Waldgebiet zum anderen. Die Werte der elektrischen Leitfähigkeit und der Adsorptionsgeschwindigkeit von Natrium bei brach liegendem Land erwiesen sich als maßgeblich verschieden zu jenen von Waldgebieten (p < 0.05). Auf dem Trockenland-Vertisolboden der Region Gadarif im Sudan wurde mehr als ein Drittel der nationalen Hirseproduktion erwirtschaftet – dem Haupternährungserzeugnis des Landes. Bodenverdichtung erwies sich als eines der weltweiten Hauptprobleme für den Pflanzenbau. Bodenfestigkeit und Versickerungsrate sind wichtige Variabeln, um Bodenprozesse verstehen und vorhersagen zu können. Die Auswirkungen der drei verschiedenen Landnutzungssysteme (bewirtschaftetes Land, brach liegendes Land und Waldgebiet) auf die Bodenverdichtung und Versickerungsrate wurden an zwei Standorten im Beobachtungsgebiet untersucht. Standort 1 ist der ältere der beiden. Der Widerstand der Bodenpenetration (SPR) wurde in drei Tiefen durch eine manuell angewandte Rammsonde gemessen. Mittels der Nutzung eines Doppelring-Infiltrometers ist die Versickerungsrate im Feld gemessen worden. Im Anschluss an die Probenentnahme mittels Rammsonden wurden Bodenproben gesammelt, um jene Variabeln bestimmen zu können, welche den Widerstand der Bodenpenetration sowie der Versickerungsrate im Vergleich zur Partikelgröße, zur trockenen Bodendichte, zum volumetrischen Feuchtigkeitsgehalt (VMC) und zum organischen Karbongehalt (OC) beeinflussen. Für jeden Landnutzungstypen wurden Feldmessungen durchgeführt und Bodenproben entnommen. Die gemessenen Daten der Versickerungsrate wurden in das Kostiakov-Modell eingespeist, um die gesamte Bodenwasserversickerung vorhersagen zu können. Die Bodenverdichtung bei bewirtschaftetem Land war 65 % stärker als bei Waldgebiet. Für Waldgebietsflächen wurde eine Zunahme der Versickerungsrate um 87 % verglichen mit bewirtschaftetem Land und um 74 % im Vergleich zu brach liegendem Land aufgezeigt. Beide Untersuchungsstandorte zeigten eine Zunahme in der trockenen Bodendichte für den Fall, dass der Widerstand der Bodenpenetration zunimmt, während der volumetrische Feuchtigkeitsgehalt mit zunehmendem Bodenpenetrationswiderstand abnimmt. Ebenso wurde beobachtet, dass ein geringer organischer Karbongehalt in Verbindung zu hohen Widerstandswerten der Bodenpenetration steht. Bei Standort 1 passte der durchschnittliche Bestimmungskoeffizient (R²) der Versickerungsrate zum Kostiakov-Modell mit den Werten 0.65 für bewirtschaftetes Land, 0.73 für brach liegendes Land und 0.84 für Waldgebiet. Für Standort 2 indessen ergaben die Werte 0.63, 0.76 und 0.78. Landwirtschaft, die in vielen Formen ausgeübt wird, ist die Haupttätigkeit in der Region Gadarif, und geht mit verschiedenartigsten Umweltauswirkungen und Konsequenzen einher. Kontinuierliche Feldbestellung des bewirtschafteten Landes, verbunden mit ungeeigneter Bodenbewirtschaftung, hat sich seit jenem Zeitpunkt, als sich die Landnutzung von Waldgebiet zu bewirtschaftetem und brach liegendem Land änderte, zu Bodenschädigung geführt. Daher muss die Entwicklung nachhaltiger Landnutzungspraktiken beim Trockenfeldbau im Untersuchungsgebiet verbessert werden, damit in Zukunft der Umfang der Bodendegradation verringert werden kann
Al-Fares, Wafi [Verfasser], Christiane [Akademischer Betreuer] Schmullius, and Sören [Akademischer Betreuer] Hese. "Historical land use, land cover classification and its change detection mapping using Different Remotely Sensed Data from LANDSAT (MSS, TM and ETM+) and Terra (ASTER) sensors : a case study of the Euphrates River Basin in Syria with focus on agricultural irrigation projects / Wafi Al-Fares. Gutachter: Christiane Schmullius ; Sören Hese." Jena : Thüringer Universitäts- und Landesbibliothek Jena, 2012. http://d-nb.info/1028857896/34.
Full textRichter, Dietmar. "Flächennutzungswandel in Tirana : Untersuchungen anhand von Landsat TM, Terra ASTER und GIS." Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2007/1301/.
Full textMendoza, Nolorbe Juan Neil. "Exploración de aguas subterráneas en la región Lambayeque – Perú usando imágenes Landsat y Aster." Master's thesis, Universidad Nacional Mayor de San Marcos, 2012. https://hdl.handle.net/20.500.12672/15193.
Full textCon el propósito de complementar las diferentes técnicas de prospección geofísica aplicada a la exploración del agua subterránea se propone el uso de imágenes satelitales Landsat y Aster. El área de estudio es la Región Lambayeque que está ubicada en la costa norte del Perú, entre las coordenadas geográficas 5º 28' 36'' y 7º 14' 37'' de latitud Sur y 79º 41' 30'' y 80º 37' 23'' de longitud Oeste. Los datos utilizados son las imágenes registradas por el sensor ETM+ del satélite Landsat-7, ortorectificadas y con un porcentaje de nubes inferior al 10% de fecha 31-10- 2000 y las imágenes del modelo de elevación digital ASTER GDEM. Se realiza un análisis visual y estadístico de los datos imágenes usando diferentes técnicas como el ajuste de histogramas, composición de colores, componentes principales, filtros y fusiones de imágenes de diferentes resoluciones espaciales, para identificar unidades hidrogeológicas y el patrón de drenaje natural del área de estudio. Con los datos imágenes ETM+ de las bandas 3 y 4 se calcula el índice de vegetación diferencial normalizado (NDVI) y con los datos imágenes ETM+ de la banda 6 se estima la temperatura de la superficie terrestre del área de estudio. Los resultados del análisis estadístico de las imágenes ETM+ y ASTER GDEM se usan para clasificar mediante un árbol de decisiones las zonas potencialmente con agua subterránea, el resultado es un mapa temático con zonas potencialmente con agua subterránea. El mapa temático es validado parcialmente con el inventario de pozos de agua subterránea realizado por INRENA en la parte media baja de la cuenca ChancayLambayeque (INRENA, 2001) observando que el 73% de los pozos están ubicados dentro de las zonas referidas como potencialmente con agua subterránea. El resultado obtenido no es determinante en la existencia de acuíferos libres, se requieren de técnicas in situ para la determinación precisa de éstos. Sin embargo, el método proporciona información a nivel regional de zonas potencialmente con agua subterránea de la Región Lambayeque.
Tesis
Weber, Nadine. "Meso- und mikroskalige Untersuchungen der Landoberflächentemperaturen von Berlin." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2009. http://dx.doi.org/10.18452/15972.
Full textUrban areas differ from surfaces of rural character. They are very modified in their radiation- and energy balance. In this study land-surface temperatures of the city of Berlin are analyzed with the help of satellite pictures of the ASTER- and Landsat-5 and -7 sensors in mesoscale and then extended by extra measurements of an infrared camera in microscale over the course of 17 months. This data combined with GIS based information on different land use and -structures are used for the analysis of spatial and time distribution, as well as for the determination of functional relations between thermal behaviour of surfaces and the related urban structures. The evaluation mainly deals with physical processes and properties that have an influence on energetic flows and their interactions with urban surfaces. A thermal characteristic of individual districts, from different land use classes to specific materials is being created. In this there are differences in temperature of several tenths Kelvin between the typical urban surfaces of roofs and grass areas visible. The results show that the distribution of the LST varies immensely and correlates with the land coverage. It is shown, what urban structures are most thermic burdened, what individual significance specific materials have. Special attention is paid to the different possibilities of the influence through shadow. It is possible to reach a difference of surface temperatures of more than 10 Kelvin by shadow. At the end models with the 3-dimensional ENVImet are used to verify the camera measurements as well as to show the influence of minimal changes in microscale climate.
Kirk, Judith. "Defining regenerating fire scars with Landsat TM data /." Title page, contents and abstract only, 1990. http://web4.library.adelaide.edu.au/theses/09AR/09ark59.pdf.
Full textTetzlaff, Anke. "Coal fire quantification using ASTER, ETM and BIRD satellite instrument data." Diss., [S.l.] : [s.n.], 2004. http://edoc.ub.uni-muenchen.de/archive/00004398.
Full textPadgett-Vasquez, Steve. "Tracking landscape changes in the Upper Cahaba River watershed and its tributaries (1974-2007) using Landsat and ASTER multipsectral image." Birmingham, Ala. : University of Alabama at Birmingham, 2010. https://www.mhsl.uab.edu/dt/2010m/padgett-vasquez.pdf.
Full textEl-Sawaf, Amro. "Monitoring changes in field geometry using LANDSAT digital data." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq22593.pdf.
Full textGriffiths, G. H. "Mapping rangeland vegetation in Northern Kenya from Landsat data." Thesis, Aston University, 1985. http://publications.aston.ac.uk/14254/.
Full textBansal, Arun Kumar. "Evaluation of Landsat thematic mapper data for reforestation assessment." Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/27796.
Full textForestry, Faculty of
Graduate
Hurley, Angela Lorraine. "Identification of Gypsy Moth Defoliation in Ohio Using Landsat Data." Wright State University / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=wright1056998977.
Full textCandanedo, Guevara Martin Edmundo. "Using landsat tm data to model corn and soybeans yields /." The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486400446372011.
Full textLiang, Xiaoyu. "Quantile Regression-based Change Detection using Landsat Analysis Ready Data." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587543949296519.
Full textAndersson, Marcus. "Estimating Phosphorus in rivers of Central Sweden using Landsat TM data." Thesis, Stockholms universitet, Institutionen för naturgeografi och kvartärgeologi (INK), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-77693.
Full textJones, Arwyn Rhys. "Geomorphological mapping in arid environments using the Landsat Thematic Mapper data." Thesis, University of Reading, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358274.
Full textMomeni, Rahman. "Enhancing the spatial resolution of Landsat data for mapping urban areas." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/43462/.
Full textGhannam, Sherin Ghannam. "Multisensor Multitemporal Fusion for Remote Sensing using Landsat and MODIS Data." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/81092.
Full textPh. D.
Brooks, Evan B. "Fourier Series Applications in Multitemporal Remote Sensing Analysis using Landsat Data." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/23276.
Full textPh. D.
Dungan, Jennifer Lee. "Geostatistical prediction of vegetation amount using ground and remotely sensed data." Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313333.
Full textWang, Ming-Chih Jason. "Mapping and monitoring land degradation in southern New Mexico using Landsat data." Thesis, King's College London (University of London), 2000. https://kclpure.kcl.ac.uk/portal/en/theses/mapping-and-monitoring-land-degradation-in-southern-new-mexico-using-landsat-data(b569ef6b-4a7a-49e2-a902-c454e57d0dbf).html.
Full textNdegwa, Lucy W. "Monitoring the Status of Mt. Kenya Forest Using Multi-Temporal Landsat Data." Miami University / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=miami1125426520.
Full textHubbard, Neil K. "Analysis of Landsat MSS data for land cover mapping of large areas." Thesis, University of Aberdeen, 1985. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU363486.
Full textMah, G. R., R. Pater, K. Alberts, M. O’Brien, and T. Senden. "A MODULAR APPROACH TO LANDSAT 7 GROUND PROCESSING." International Foundation for Telemetering, 2000. http://hdl.handle.net/10150/607708.
Full textCurrent Landsat 7 processing is based on a single-string, multifunction approach. A follow-on system has been designed that repartitions functions across multiple hardware platforms to provide increased flexibility and support for additional missions. Downlink bit stream acquisition has been moved to lower cost systems functioning as “capture appliances” with high-speed network interconnections to Level 0 processing on generic compute servers. This decouples serial data stream acquisition from the processing system to allow the addition or replacement of compute servers, without the reintegration of specialized high-speed capture hardware. Moreover, it also allows the easy integration of new systems and missions without extensive system redesign or additional software.
Nery, Luis Antonio. "Mapeamento de areas de cafe no municipio de Guaxupe/MG por meio de processamento digital de imagens Landsat." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/256968.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agricola
Made available in DSpace on 2018-08-13T09:46:25Z (GMT). No. of bitstreams: 1 Nery_LuisAntonio_M.pdf: 111375957 bytes, checksum: 05f2b3dc3fe0dece107d3e34a24a5a3e (MD5) Previous issue date: 2009
Resumo: A importância econômica da produção brasileira de café no mercado mundial é notória e contribui com uma grande parcela na balança comercial de exportação do país. Minas Gerais se destaca como o centro da atual produção cafeeira no Brasil e tem na região sul do estado a grande concentração da lavoura de café (Coffea arabica), onde o seu cultivo é realizado em pequenas propriedades bastante dispersas pela região montanhosa. A necessidade de adequação da agricultura cafeeira por meio do planejamento, controle de custos e melhoria da produtividade, tem acelerado a procura por técnicas e ferramentas para a previsão da produção agrícola passando, necessariamente, pela localização e quantificação das áreas cultivadas. Neste contexto, o objetivo desta pesquisa foi avaliar o fornecimento de informações dos dados do sensor TM/Landsat 5 utilizando as técnicas de Análise por Principais Componentes (APC) e separação de classes de iluminação sobre as áreas de lavoura de café em região montanhosa. A área de estudo escolhida foi o município de Guaxupé/MG por conter uma forte lavoura cafeeira mantida sob um organizado sistema cooperativo. Foram utilizadas imagens dos satélites Landsat 7, Landsat 5 e do sensor MODIS para a aplicação das técnicas de processamento digital, para correção atmosférica e normalização radiométrica, visando a análise do cafeeiro nas datas de 15/08/2001, 05/12/2001 e 12/04/2002, que caracterizam os estágios fenológicos do cafeeiro como períodos de colheita (repouso e senescência dos ramos), florada e início do crescimento da gemas florais, respectivamente. Também foi utilizada uma máscara da área cafeeira obtida por método de interpretação visual extraído de imagens Ikonos. A utilização de um modelo digital de elevação gerado por imagens do sensor ASTER/TERRA possibilitou a aplicação da técnica de determinação do fator de iluminação, que consistiu na criação de classes de iluminação que contribuíram na identificação de áreas de lavoura e áreas de mata sombreadas pelo relevo. Dados de campo foram levantados para auxiliar na identificação da lavoura cafeeira, separadas pelas classes amostrais de café adensado e café adulto em função dos espaçamentos de ruas e linhas adotados no plantio. A Análise por Principais Componentes (APC) foi aplicada com o objetivo de reduzir a redundância dos dados obtidos das imagens orbitais de maneira a permitir a seleção de amostras de treinamento para a utilização em classificação supervisionada. Utilizando o método da Distância de Mahalanobis como classificador, as imagens nas datas selecionadas para a pesquisa, mostraram dados importantes quando comparados os resultados das classificações com a máscara da área de café extraída das imagens Ikonos do município. Os resultados dessas classificações foram validados por meio da determinação da Exatidão Global e coeficiente Kappa que mostraram os valores de EG= 0,78 e K= 0,40 para a imagem de 15/08/2001, EG= 0,81 e K= 0.29 para a imagem de 05/12/2001 e, EG= 0,76 e K= 0,24 para a data de 12/04/2002, confirmando que o período seco (maio até outubro) é favorável para a classificação do cafeeiro que, neste período está sob processo de colheita onde, a queda de folhas e remoção de frutos ocorre, diferenciando das outras coberturas do solo como as matas. Os maiores valores atingidos na validação dos dados ocorreram na classificação da imagem gerada pela composição dos resultados das três datas, atingindo valores de EG = 0,81 e Kappa = 0,56. O valor da área, quantificada como sendo da cultura do café, encontrado pelo método de soma dos resultados das classificações em cada data, produziu um valor 73,06 % do total de área quantificada na máscara de café, utilizada como referência. Neste sentido a metodologia se mostrou bem adequada na quantificação de áreas de café em relevo montanhoso.
Abstract: The economic importance of Brazilian coffee growing in the world market is notorious and makes up significant portion of the country's foreign trade exports. Minas Gerais stands out as the core of Brazilian coffee growing, with most of the planting areas (Coffea arabica) concentrated in the south, where it is grown in small plots widely spread throughout the hills. The need to adequate coffee agriculture by planning, cost control and productivity improvement has increased the search for techniques and tools for the prediction of agricultural production, necessarily involving the location and quantification of cultivated areas. In this context, the goal of this research has been to evaluate data from the TM/Landsat-5 remote sensor, providing information about coffee growing areas in hilly regions. The city of Guaxupé/MG/Brazil was chosen for this study due to its strong coffee growing, kept under an organized cooperate system. Images from the Landsat-7 and Landsat-5 satellites and from the MODIS sensor have been employed for the purpose of using digital processing tools for atmospheric correction and radiometric normalization, in order to analyze coffee crops in three dates: 08/15/2001, 12/05/2001 and 04/12/2002, characterizing phenological stages such as harvesting periods (rest and senescence of boughs), flowering and beginning of flower bud growing, respectively. The use of a digital elevation model generated from ASTER/TERRA sensor enabled the use of a lighting factor determination technique, consisting in the creation of lighting classes that contributed in the identification of crop areas and terrain-shadowed vegetated areas. Field data were gathered to help identifying coffee plantation separated by sample classes of dense coffee and adult coffee as a function of the spacing of the field foods and lines used in planting. PCA (Principal Component Analysis) was applied in order to reduce the redundancy of the data obtained from orbital imaging in a way that allows the selection of training samples for use in supervised classification. Using the Mahalanobis Distance as a classifier, the images in the selected dates showed highly positive result when the classification was compared to the coffee area mask extracted from Ikonos images. The results of these classifications were validated through the determination of Global Accuracy and Kappa Index, which showed values of GA= 0.78 and K= 0.40 for the 08/15/2001 image, GA= 0.81 and K= 0.29 for the 12/05/2001 image, and GA= 0.76 and K= 0.24 for 04/12/2002, confirming that the dry season (May through October) is favorable for the classification of coffee, which is under the harvesting process in this period, during which the falling of leaves and remotion of fruit separates it from other ground cover such as vegetation. The spectral data obtained from satellite imaging through digital processing have proven themselves adequate for the location of coffee-growing areas in hilly regions when aided by a digital elevation model. The value of the area as being coffee crop, calculated by sum of the areas found from each date classification, produced 73,06% of the agreement with coffee mask considered as a reference data. Due this the methodology showed very suitable to quantify coffee areas in hilly region.
Mestrado
Planejamento e Desenvolvimento Rural Sustentável
Mestre em Engenharia Agrícola
Fleming, Andrew Lawrence. "FOREST CARBON MAPPING AND SPATIAL UNCERTAINTY ANALYSIS: COMBINING NATIONAL FOREST INVENTORY DATA AND LANDSAT TM IMAGES." OpenSIUC, 2011. https://opensiuc.lib.siu.edu/theses/584.
Full textPolanski, Thomas. "Weighting Landsat Digital Data According to Land Cover Emissivity for Surface Temperature Mapping." TopSCHOLAR®, 1995. http://digitalcommons.wku.edu/theses/918.
Full textEisenbeis, Kathleen M. "Privatizing government information : the effects of policy on access to Landsat satellite data /." Metuchen (N.J.) ; London : the Scarecrow press, 1995. http://catalogue.bnf.fr/ark:/12148/cb37482790w.
Full textNotes bibliogr. Bibliogr. p.287-314. Index.
Kamontum, Siripon. "Fusion of Landsat-7, IRS-1D and Radarsat-1 data for flood delineation." [Gainesville, Fla.] : University of Florida, 2009. http://purl.fcla.edu/fcla/etd/UFE0024237.
Full textZhu, Zhe. "Continuous change detection and classification of land cover using all available Landsat data." Thesis, Boston University, 2013. https://hdl.handle.net/2144/12901.
Full textLand cover mapping and monitoring has been widely recognized as important for understanding global change and in particular, human contributions. This research emphasizes the use ofthe time domain for mapping land cover and changes in land cover using satellite images. Unlike most prior methods that compare pairs or sets of images for identifying change, this research compares observations with model predictions. Moreover, instead of classifying satellite images directly, it uses coefficients from time series models as inputs for land cover mapping. The methods developed are capable of detecting many kinds of land cover change as they occur and providing land cover maps for any given time at high temporal frequency. One key processing step of the satellite images is the elimination of "noisy" observations due to clouds, cloud shadows, and snow. I developed a new algorithm called Fmask that processes each Landsat scene individually using an object-based method. For a globally distributed set ofreference data, the overall cloud detection accuracy is 96%. A second step further improves cloud detection by using temporal information. The first application ofthe new methods based on time series analysis found change in forests in an area in Georgia and South Carolina. After the difference between observed and predicted reflectance exceeds a threshold three consecutive times a site is identified as forest disturbance. Accuracy assessment reveals that both the producers and users accuracies are higher than 95% in the spatial domain and approximately 94% in the temporal domain. The second application ofthis new approach extends the algorithm to include identification of a wide variety of land cover changes as well as land cover mapping. In this approach, the entire archive of Landsat imagery is analyzed to produce a comprehensive land cover history ofthe Boston region. The results are accurate for detecting change, with producers accuracy of 98% and users accuracies of 86% in the spatial domain and temporal accuracy of 80%. Overall, this research demonstrates the great potential for use of time series analysis of satellite images to monitor land cover change.
Kayastha, Nilam. "Application on Lidar and Time Series Landsat Data for Mapping and Monitoring Wetlands." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/54011.
Full textPh. D.
Kesten, Dagmar. "Structural observations at the southern Dead Sea Transform from seismic reflection data and ASTER satellite images." Phd thesis, [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=974109479.
Full textHaselwimmer, Christian E. "Lithological mapping on the Antarctic Peninsula using advanced spaceborne thermal emission and reflection radiometer (ASTER) data." Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/5858.
Full textKhajeddin, Sayed Jamaleddin. "A survey of the plant communities of the Jazmorian, Iran, using Landsat MSS data." Thesis, University of Reading, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320549.
Full textMagee, Robert William. "Digital image processing of Landsat data for mapping hydrothermally altered rocks in New Mexico." Thesis, Imperial College London, 1990. http://hdl.handle.net/10044/1/46423.
Full textChambers, Samuel David. "Application of Spectral Change Detection Techniques to Identify Forest Harvesting Using Landsat TM Data." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/34306.
Full textLandsat TM imagery of Louisa County, Virginia was acquired on anniversary dates in both 1996 and 1998 (Path 16, Row 34), clipped to the study area boundary, and registered to one another. Previous to the change detection exercise, two levels of atmospheric corrections were applied to the imagery separately to produce three data sets. The three data sets were evaluated to determine what level of pre-processing is necessary for harvest change detection. In addition, eight change detection techniques were evaluated: 1) the 345 TM band differencing, 2) 35 TM band differencing, 3) NDVI differencing, 4) principal component 1 differencing, 5) selection of a change band in a multitemporal PCA, 6) tasseled cap brightness differencing, 7) tasseled cap greenness differencing, and 8) univariate differencing using TM band 7. A hybrid method that used the results from the eight previous techniques was developed. After performing the change detection, majority filters using window sizes of 3x3 pixels, 5x5 pixels, and 7x7 pixels were applied to the change maps to determine how eliminating small groups of misclassified pixels would affect accuracies. Accuracy assessments of the binary (harvested or not harvested) change maps were used to evaluate the accuracies of the various methods described using 256 validation points collected by the Virginia Department of Forestry.
The atmospheric corrections did not seem to significantly benefit the change detection techniques, and in some cases actually degraded accuracies. Of the eight techniques applied to the original dataset, univariate differencing using TM band 7 performed the best with a 90.63% overall accuracy, while Tasseled Cap Greenness returned the worst result with an overall accuracy of 78.91%. Principal component 1 differencing and 35 differencing also performed well. The hybrid approach returned good results, but at its best returned an overall accuracy of 90.63%, matching the TM band 7 method. The majority filters using the 3x3 and 5x5 window sizes increased the accuracy in many cases, while the majority filter using the 7x7 window size degraded overall accuracy.
Master of Science
Jiang, Yitong. "Identification of Sewage Sludge Injection Application on Harvested Agricultural Fields Using Landsat TM Data." University of Toledo / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1290201856.
Full textWalker, Jessica. "Analysis of Dryland Forest Phenology using Fused Landsat and MODIS Satellite Imagery." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/39403.
Full textPh. D.
Kressler, Florian. "The Integration of Remote Sensing and Ancillary Data." WU Vienna University of Economics and Business, 1996. http://epub.wu.ac.at/4256/1/WSG_RR_0896.pdf.
Full textSeries: Research Reports of the Institute for Economic Geography and GIScience
Wilson, R. "Quantifying Himalayan glacier change from the 1960s to early 2000s, using corona, glims and aster geospatial data." Thesis, University of Salford, 2015. http://usir.salford.ac.uk/35932/.
Full textPope, Allen J. "Multispectral classification and reflectance of glaciers : in situ data collection, satellite data algorithm development, and application in Iceland & Svalbard." Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/245061.
Full textPierson, Braden James. "Applications of Landsat MSS data to wetland areas of the south east of South Australia /." Title page, contents and abstract only, 1991. http://web4.library.adelaide.edu.au/theses/09AR/09arp624.pdf.
Full textWang, Jianjun. "Modelling surface solar energy by use of landsat thematic mapper data and digital elevation models." Thesis, University of Reading, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336667.
Full textThenkabail, Prasad Srinivasa. "Capabilities of LANDSAT-5 Thematic Mapper (TM) data in studying soybean and corn crop variables /." Connect to resource, 1992. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1129300399.
Full textAdvisors: A.D. Ward and John G. Lyon, Dept. of Agricultural Engineering. Includes bibliographical references. Available online via OhioLINK's ETD Center
Fried, Samantha Jo. "Landsat in Contexts: Deconstructing and Reconstructing the Data-to-Action Paradigm in Earth Remote Sensing." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/89431.
Full textDoctor of Philosophy
I have identified a problem I call the data-to-action paradigm. When we scroll around on Facebook and find articles –– citing pages and pages of statistics –– on our rapidly melting glaciers and increasingly unpredictable weather patterns, we are existing within this paradigm. We have been offered evidence of looming, catastrophic change, but no suggestions on what to do about it. This is not only happening with climatological data and large-scale environmental systems modelling. Rather, this is a general problem across the field of Earth Remote Sensing. The origins of this data-to-action paradigm, I argue, can be found in old and new rhetoric about Landsat, the United States’ first natural resource management satellite. This rhetoric often says that Landsat — and other natural resource management satellites’ — data is a way toward societal good. The more data we have, the more good will proliferate in the world. However, we haven’t been specific about what that good might look like, and what kinds of actions we might take toward that good using this data. This is because, I argue, Earth systems science is politically complicated, with many different conceptions of societal good. In order to be more specific about how we might use this data toward some kind of good we must (1) explore the history of environmental data, and figure out where this rhetoric comes from (which I I do in this dissertation), and (2) encourage interdisciplinary collaborations between Earth Remote Sensing scientists, social scientists, and humanists, to more specifically flesh out connections between digital Earth data, its analyses, and subsequent civic action on such data.
Thenkabail, Prasad Srinavasa. "Capabilities of LANDSAT-5 Thematic Mapper (TM) data in studying soybean and corn crop variables." The Ohio State University, 1992. http://rave.ohiolink.edu/etdc/view?acc_num=osu1129300399.
Full textKemp, Jacobus Nicholas, H. L. Zietsman, and G. Stevens. "Evaluating image classification techniques on ASTER data for lithological discrimination in the Barberton Greenstone Belt, Mpumalanga, South Africa." Thesis, Stellenbosch : University of Stellenbosch, 2005. http://hdl.handle.net/10019.1/4933.
Full text81 Leaves printed on single pages i-xi, preliminary pages and numbered pages 1- 70. Includes bibliography, list of tables and list of figures.
Digitized at 300 dpi color PDF format (OCR), using KODAK i 1220 PLUS scanner.
ENGLISH ABSTRACT: Geological field mapping is often limited by logistical and cost constraints as well as the scope and extent of observations possible using ground-based mapping. Remote sensing offers, among others, the advantages of an increased spectral range for observations and a regional perspective of areas under observation. This study aimed to determine the accuracy of a collection of image classification techniques when applied to ASTER reflectance data. Band rationing, the Crosta Technique, Constrained Energy Minimization, Spectral Correlation Mapping and the Maximum Likelihood Classifier were evaluated for their efficiency in detecting and discriminating between greenstone and granitoid material. The study area was the Archaean Barberton Greenstone Belt in the eastern Mpumalanga Province, South Africa. ASTER reflectance imagery was acquired and pre-processed. Training and reference data was extracted from the image through visual inspection and expert knowledge. The training data was used in conjunction with USGS mineral spectra to train the five classification algorithms using the ERDAS's software package. This resulted in abundance images for the target materials specified by the training data. The Maximum Likelihood Classifier produced a classified thematic map. The reference data was used to perform a rigorous classification accuracy assessment procedure. All abundance images were thresholded to varying levels, obtaining accuracy statistics at every level. In so doing, threshold levels could be defined for every abundance image in such a way that the reliability of the classification was optimized. For each abundance image, as well as for the output map of the Maximum Likelihood Classifier, user's- and producer's accuracies as well as kappa statistics were derived and used as comparative measures of efficiency between the five techniques. This information was also used to assess the spectral separability of the target materials. The Maximum Likelihood Classifier outperformed the other techniques significantly, achieving an overall classification accuracy of 81.1% and an overall kappa value of 0.748. Greenstone rocks were accurately discriminated from granitoid rocks with accuracies between 72.9% and 98.5%, while granitoid rocks showed very poor ability to be accurately distinguished from each other. The main recommendations from this study are that thermal infrared and gamma-ray data be considered, together with better vegetation masking and an investigation into object orientated techniques.
AFRIKAANSE OPSOMMING: Geologiese veldkartering word algemeen beperk deur logistiese en koste-verwante faktore, sowel as die beperkte bestek waartoe waarnemings met veld-gebasseerde tegnieke gemaak kan word. Afstandswaarneming bied, onder andere, 'n vergrote spekrale omvang vir waarnemings en 'n regionale perspektief van die area wat bestudeer word. Hierdie studie was gemik daarop om die akkuraatheid van 'n versameling beeld-klassifikasie tegnieke, toegepas op ASTER data, te bepaal. Bandverhoudings, die Crosta Tegniek, "Constrained Energy Minimization", Spektrale Korrellasie Kartering, en Maksimum Waarskynlikheid Klassifikasie is evalueer op grond van hul vermoë om groensteen en granitoied-rotse op te spoor en tussen hulle te onderskei. Die studiegebied was die Argalese Barberton Groensteengordel in die oostelike Mpumalanga Provinsie in Suid Afrika. 'n ASTER refleksie beeld is verkry, waarop voorverwerking uitgevoer is. Opleidings- en verwysingsdata is van die beeld verkry deur visuele inspeksie en vakkundige kennis. Die opleidingsdata is saam met VSGO mineraalspektra gebruik om die vyf klassifikasie algoritmes met behulp van die ERDAS sagteware pakket op te lei. Die resultaat was volopheidsbeelde vir die teikenmateriale gespesifiseer in die opleidingsdata. Die Maksimum Waarskynlikheid algoritme het 'n geklassifiseerde tematiese beeld gelewer. Met behulp van die verwysingsdata is 'n streng akkuraatheidstoetsing prosedure uitgevoer. Vir alle volopheidsbeelde is 'n reeks drempelwaardes gestel, en by elke drempelwaarde is akkuraatheidsstatistieke afgelei. Op hierdie manier kon 'n drempelwaarde vir elke volopheidsbeeld vasgestel word sodat die drempelwaarde die betroubaarheid van die klassifikasie optimeer. Vir elke volopheidsbeeld, asook vir die tematiese kaart verkry van die Maksimum Waarskynlikheid klassifikasie, is gebruikers- en produsent-akkuraathede en kappa statistieke bereken. Hierdie waardes is gebruik as vergelykende maatstawwe van akkuraatheid tussen die vyf tegnieke, asook van die spektrale skeibaarheid van die onderskeie teikenmateriale. Die Maksimum Waarskynlikheid klassifikasie het die beste resultate gelewer, met 'n algehele klassifikasie akkuraatheid van 81.1%, en 'n gemiddelde kappa waarde van 0.748. Groensteenrotse kon met hoë akkuraathede van tussen 72.9% en 98.5% van granitoiedrotse onderskei word, terwyl granitoiedrotse 'n swak vermoë getoon het om van mekaar onderskei te word. Die belangrikste aanbevelings vanuit hierdie studie is dat termiese uitstralingdata asook gamma-straal data geimplimenteer word. Beter verwydering van plantegroei en 'n studie na die lewensvatbaarheid van objekgeorienteerde metodes word ook aanbeveel.
Dmochowski, Jane Ellen Clayton Robert W. "Application of MODIS-ASTER (Master) simulator data to geological mapping of young volcanic regions in Baja California, Mexico /." Diss., Pasadena, Calif. : California Institute of Technology, 2005. http://resolver.caltech.edu/CaltechETD:etd-05262005-150027.
Full textHadi, Andrey Krasovskii, Victor Maus, Ping Yowargana, Stephan Pietsch, and Miina Rautiainen. "Monitoring Deforestation in Rainforests Using Satellite Data: A Pilot Study from Kalimantan, Indonesia." MDPI, 2018. http://dx.doi.org/10.3390/f9070389.
Full text