Journal articles on the topic 'Langmuir-Hinshelwood mechanism'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Langmuir-Hinshelwood mechanism.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Xiang, Jinyao, Xuesen Du, Yuyi Wan, Yanrong Chen, Jingyu Ran, and Li Zhang. "Alkali-driven active site shift of fast SCR with NH3 on V2O5–WO3/TiO2 catalyst via a novel Eley–Rideal mechanism." Catalysis Science & Technology 9, no. 21 (2019): 6085–91. http://dx.doi.org/10.1039/c9cy01565e.
Full textBaxter, R. J., and P. Hu. "Insight into why the Langmuir–Hinshelwood mechanism is generally preferred." Journal of Chemical Physics 116, no. 11 (March 15, 2002): 4379–81. http://dx.doi.org/10.1063/1.1458938.
Full textSingh, Archana, Veerabhadraiah Palakollu, Aman Pandey, Sriram Kanvah, and Sudhanshu Sharma. "Green synthesis of 1,4-benzodiazepines over La2O3 and La(OH)3 catalysts: possibility of Langmuir–Hinshelwood adsorption." RSC Advances 6, no. 105 (2016): 103455–62. http://dx.doi.org/10.1039/c6ra22719h.
Full textBorovinskaya, Ekaterina. "Redundancy-Free Models for Mathematical Descriptions of Three-Phase Catalytic Hydrogenation of Cinnamaldehyde." Catalysts 11, no. 2 (February 4, 2021): 207. http://dx.doi.org/10.3390/catal11020207.
Full textAtitar, M. Faycal, Asmae Bouziani, Ralf Dillert, Mohamed El Azzouzi, and Detlef W. Bahnemann. "Photocatalytic degradation of the herbicide imazapyr: do the initial degradation rates correlate with the adsorption kinetics and isotherms?" Catalysis Science & Technology 8, no. 4 (2018): 985–95. http://dx.doi.org/10.1039/c7cy01903c.
Full textGao, Xiaoyan, Yunhong Zhang, and Yong Liu. "A kinetics study of the heterogeneous reaction ofn-butylamine with succinic acid using an ATR-FTIR flow reactor." Physical Chemistry Chemical Physics 20, no. 22 (2018): 15464–72. http://dx.doi.org/10.1039/c8cp01914b.
Full textRai, Sandhya, Masahiro Ehara, and U. Deva Priyakumar. "Nucleobases tagged to gold nanoclusters cause a mechanistic crossover in the oxidation of CO." Physical Chemistry Chemical Physics 17, no. 37 (2015): 24275–81. http://dx.doi.org/10.1039/c5cp04273a.
Full textMehrvar, Mehrab, William A. Anderson, and Murray Moo-Young. "Photocatalytic degradation of aqueous tetrahydrofuran, 1,4-dioxane, and their mixture with TiO2." International Journal of Photoenergy 2, no. 2 (2000): 67–80. http://dx.doi.org/10.1155/s1110662x00000106.
Full textCamu, Esteban, Cesar Pazo, Daniel Becerra, Yoan Hidalgo-Rosa, Dayan Paez-Hernandez, Ximena Zarate, Eduardo Schott, and Nestor Escalona. "A new approach to the mechanism for the acetalization of benzaldehyde over MOF catalysts." New Journal of Chemistry 44, no. 35 (2020): 14865–71. http://dx.doi.org/10.1039/d0nj02416c.
Full textZhao, Bo, Jun Han, Linbo Qin, Wangsheng Chen, Zijian Zhou, and Futang Xing. "Impact of individual flue gas components on mercury oxidation over a V2O5–MoO3/TiO2 catalyst." New Journal of Chemistry 42, no. 24 (2018): 20190–96. http://dx.doi.org/10.1039/c8nj05084h.
Full textZeinalipour-Yazdi, Constantinos D. "Mechanistic aspects of ammonia synthesis on Ta3N5 surfaces in the presence of intrinsic nitrogen vacancies." Physical Chemistry Chemical Physics 23, no. 11 (2021): 6959–63. http://dx.doi.org/10.1039/d1cp00275a.
Full textKaloti, Mandeep, Anil Kumar, and Naveen K. Navani. "Synthesis of glucose-mediated Ag–γ-Fe2O3 multifunctional nanocomposites in aqueous medium – a kinetic analysis of their catalytic activity for 4-nitrophenol reduction." Green Chemistry 17, no. 10 (2015): 4786–99. http://dx.doi.org/10.1039/c5gc00941c.
Full textKhan, K. M., N. Ahmad, and E. V. Albano. "Catalytic formation of ammonia: a lattice gas non-thermal Langmuir–Hinshelwood mechanism." Surface Science 494, no. 2 (November 2001): 111–18. http://dx.doi.org/10.1016/s0039-6028(01)01444-3.
Full textDoukeh, Rami, Mihaela Bombos, and Ion Bolocan. "Comparative Study Between two Reaction Kinetic Mechanisms of Thiophene Hydrodesulphurization over CoMo /gama - Al2O3 Supported Catalyst." Revista de Chimie 70, no. 7 (August 15, 2019): 2481–84. http://dx.doi.org/10.37358/rc.19.7.7365.
Full textKhan, K. M., and E. V. Albano. "Catalytic oxidation of carbon monoxide: a lattice gas non-thermal Langmuir–Hinshelwood mechanism." Chemical Physics 276, no. 2 (February 2002): 129–37. http://dx.doi.org/10.1016/s0301-0104(01)00574-2.
Full textZelenov, V. V., and E. V. Aparina. "Reaction Mechanism of Ozone with Methane Flame Soot: Langmuir–Hinshelwood or Unimolecular Decomposition?" Russian Journal of Physical Chemistry B 15, no. 3 (May 2021): 547–58. http://dx.doi.org/10.1134/s1990793121030143.
Full textStyler, S. A., M. E. Loiseaux, and D. J. Donaldson. "Substrate effects in the photoenhanced ozonation of pyrene." Atmospheric Chemistry and Physics Discussions 10, no. 11 (November 15, 2010): 27825–52. http://dx.doi.org/10.5194/acpd-10-27825-2010.
Full textStyler, S. A., M. E. Loiseaux, and D. J. Donaldson. "Substrate effects in the photoenhanced ozonation of pyrene." Atmospheric Chemistry and Physics 11, no. 3 (February 14, 2011): 1243–53. http://dx.doi.org/10.5194/acp-11-1243-2011.
Full textGao, Erhao, Bei Huang, Zilong Zhao, Hua Pan, Wei Zhang, Younan Li, Matthew T. Bernards, Yi He, and Yao Shi. "Understanding the co-effects of manganese and cobalt on the enhanced SCR performance for MnxCo1−xCr2O4 spinel-type catalysts." Catalysis Science & Technology 10, no. 14 (2020): 4752–65. http://dx.doi.org/10.1039/d0cy00872a.
Full textMorisset, S., F. Aguillon, M. Sizun, and V. Sidis. "Quantum dynamics of H2 formation on a graphite surface through the Langmuir Hinshelwood mechanism." Journal of Chemical Physics 121, no. 13 (October 2004): 6493–501. http://dx.doi.org/10.1063/1.1781118.
Full textGalván Muciño, Gabriel E., Rubi Romero, Armando Ramírez, María Jesús Ramos, Ramiro Baeza-Jiménez, and Reyna Natividad. "Kinetics of Transesterification of Safflower Oil to Obtain Biodiesel Using Heterogeneous Catalysis." International Journal of Chemical Reactor Engineering 14, no. 4 (August 1, 2016): 929–38. http://dx.doi.org/10.1515/ijcre-2015-0108.
Full textKocemba, Ireneusz, Sławomir Szafran, Jacek Rynkowski, and Tadeusz Paryjczak. "Relationship between the Catalytic and Detection Properties of SnO2 and Pt/SnO2 Systems." Adsorption Science & Technology 20, no. 9 (November 2002): 897–905. http://dx.doi.org/10.1260/02636170260555804.
Full textUrmès, Caroline, Jean-Marc Schweitzer, Amandine Cabiac, and Yves Schuurman. "Kinetic Study of the Selective Hydrogenation of Acetylene over Supported Palladium under Tail-End Conditions." Catalysts 9, no. 2 (February 14, 2019): 180. http://dx.doi.org/10.3390/catal9020180.
Full textBandyopadhyay, Debajyoti, and Ahindra Ghosh. "Validity of rate equation based on Langmuir-Hinshelwood mechanism for gasification of carbon - a reappraisal." Steel Research 67, no. 3 (March 1996): 79–86. http://dx.doi.org/10.1002/srin.199605462.
Full textMorisset, S., F. Aguillon, M. Sizun, and V. Sidis. "Wave-packet study of H2 formation on a graphite surface through the Langmuir–Hinshelwood mechanism." Journal of Chemical Physics 122, no. 19 (May 15, 2005): 194702. http://dx.doi.org/10.1063/1.1896353.
Full textMadriz, Lorean, José Tatá, and Ronald Vargas. "The Photocatalytic Oxidation of 4-Chlorophenol Using Bi2WO6 under Solar Light Irradiation." International Journal of Photochemistry 2014 (August 5, 2014): 1–6. http://dx.doi.org/10.1155/2014/387536.
Full textZhang, Yuwei, Ping Song, Tiankai Chen, Xiaodong Liu, Tao Chen, Zhemin Wu, Yong Wang, Jianping Xie, and Weilin Xu. "Unique size-dependent nanocatalysis revealed at the single atomically precise gold cluster level." Proceedings of the National Academy of Sciences 115, no. 42 (October 1, 2018): 10588–93. http://dx.doi.org/10.1073/pnas.1805711115.
Full textYoussef, Carlos, Eric Puzenat, Samir Najm, Nicole Jaffrezic-Renault, and Chantal Guillard. "Effect of Oxygen and Water in the CO Photocatalytic Oxidation with TiO2." Advanced Materials Research 324 (August 2011): 149–52. http://dx.doi.org/10.4028/www.scientific.net/amr.324.149.
Full textKostrobij, Petro, and Iryna Ryzha. "Numerical analysis of mathematical model for CO oxidation on platinum." Physico-mathematical modelling and informational technologies, no. 32 (July 8, 2021): 165–69. http://dx.doi.org/10.15407/fmmit2021.32.165.
Full textDai, Guoliang, Lei Chen, and Xin Zhao. "Tungsten-Embedded Graphene: Theoretical Study on a Potential High-Activity Catalyst toward CO Oxidation." Materials 11, no. 10 (September 28, 2018): 1848. http://dx.doi.org/10.3390/ma11101848.
Full textGómez-Marín, Ana M., and Juan P. Hernández-Ortiz. "Langmuir–Hinshelwood Mechanism Including Lateral Interactions and Species Diffusion for CO Electro-Oxidation on Metallic Surfaces." Journal of Physical Chemistry C 118, no. 5 (January 24, 2014): 2475–86. http://dx.doi.org/10.1021/jp409385k.
Full textRoyaee, Sayed Javid, Cavus Falamaki, Morteza Sohrabi, and Sayed Siamak Ashraf Talesh. "A new Langmuir–Hinshelwood mechanism for the methanol to dimethylether dehydration reaction over clinoptilolite-zeolite catalyst." Applied Catalysis A: General 338, no. 1-2 (April 2008): 114–20. http://dx.doi.org/10.1016/j.apcata.2008.01.011.
Full textKumari, Priyanka, and Abha Meena. "Green synthesis of gold nanoparticles from Lawsoniainermis and its catalytic activities following the Langmuir-Hinshelwood mechanism." Colloids and Surfaces A: Physicochemical and Engineering Aspects 606 (December 2020): 125447. http://dx.doi.org/10.1016/j.colsurfa.2020.125447.
Full textSorooshian, Jamshid, Leonard Borucki, David Stein, Robert Timon, Dale Hetherington, and Ara Philipossian. "Revisiting the Removal Rate Model for Oxide CMP." Journal of Tribology 127, no. 3 (June 13, 2005): 639–51. http://dx.doi.org/10.1115/1.1866168.
Full textLovic, Jelena. "The kinetics and mechanism of methanol oxidation on Pt and PtRu catalysts in alkaline and acid media." Journal of the Serbian Chemical Society 72, no. 7 (2007): 709–12. http://dx.doi.org/10.2298/jsc0707709l.
Full textWidi, Restu Kartiko. "KINETIC INVESTIGATION OF PROPANE DISAPPEARANCE AND PROPENE FORMATION IN PROPANE OXIDATION ON DILUTED AND LEACHED MoVTeNb CATALYST." Indonesian Journal of Chemistry 10, no. 2 (July 21, 2010): 172–76. http://dx.doi.org/10.22146/ijc.21456.
Full textCheng, Jie, Jian Zhang Li, Jun Bo Zhong, and Wei Hu. "Fabrication and Photocatalytic Decolorization Performance of ZnO." Advanced Materials Research 396-398 (November 2011): 823–26. http://dx.doi.org/10.4028/www.scientific.net/amr.396-398.823.
Full textur Rashid, Haroon, M. Sohail Ahmad, Mohammad Sadiq, and Razia Aman. "Potent Heterogeneous Catalyst for Low Temperature Selective Oxidation of Cyclohexanol by Molecular Oxygen." Journal of Chemistry 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/1254796.
Full textREN, XIU-BIN, and XIANG-YUN GUO. "INFLUENCE OF THE REACTION TEMPERATURE ON THE OSCILLATORY BEHAVIOR DURING PARTIAL OXIDATION OF METHANE." Surface Review and Letters 15, no. 06 (December 2008): 769–74. http://dx.doi.org/10.1142/s0218625x0801213x.
Full textKhuzwayo, Z., and E. M. N. Chirwa. "Modelling and simulation of photocatalytic oxidation mechanism of chlorohalogenated substituted phenols in batch systems: Langmuir–Hinshelwood approach." Journal of Hazardous Materials 300 (December 2015): 459–66. http://dx.doi.org/10.1016/j.jhazmat.2015.07.034.
Full textYun, Yupan, Xueyou Wen, Zhao Liang, and Zhenya Zhu. "Study on reaction mechanism and Langmuir-Hinshelwood kinetic model of catalytic denitrification by Fe0 and bimetallic catalyst." Journal of Environmental Science and Health, Part A 56, no. 5 (February 27, 2021): 501–7. http://dx.doi.org/10.1080/10934529.2021.1890496.
Full textČížek, Milan, and Vladimír Pour. "Kinetics of the reduction of nitrogen oxide and dinitrogen oxide by ammonia on a V2O5/Al2O3 catalyst in the absence of oxygen." Collection of Czechoslovak Chemical Communications 51, no. 11 (1986): 2528–36. http://dx.doi.org/10.1135/cccc19862528.
Full textBettoni, Marta, Stefano Falcinelli, Cesare Rol, Marzio Rosi, and Giovanni Vittorio Sebastiani. "Gas-Phase TiO2 Photosensitized Mineralization of Some VOCs: Mechanistic Suggestions through a Langmuir–Hinshelwood Kinetic Approach." Catalysts 11, no. 1 (December 26, 2020): 20. http://dx.doi.org/10.3390/catal11010020.
Full textJing, Qi, and Huan li. "Catalytic Air Oxidation of Refractory Organics in Wastewater." Current Organocatalysis 7, no. 3 (November 30, 2020): 179–98. http://dx.doi.org/10.2174/2213337207999200802025735.
Full textVicente, J. L., A. Maltz, and E. E. Mola. "Analytical Treatment of a Heterogeneous Reaction." Surface Review and Letters 05, no. 02 (April 1998): 545–50. http://dx.doi.org/10.1142/s0218625x9800092x.
Full textSaeed, Muhammad, Muhammad Asghar Jamal, Atta-ul Haq, Mohammad Ilyas, Mohammad Younas, and Muhammad Azhar Shahzad. "Oxidative Degradation of Methylene Blue in Aqueous Medium Catalyzed by Lab Prepared Nickel Hydroxide." International Journal of Chemical Reactor Engineering 14, no. 1 (February 1, 2016): 45–51. http://dx.doi.org/10.1515/ijcre-2015-0088.
Full textIlhan, S., A. O. Kalpakli, C. Kahruman, and I. Yusufoglu. "The use of Langmuir–Hinshelwood mechanism to explain the kinetics of calcium molybdate leaching in oxalic acid solution." Hydrometallurgy 127-128 (October 2012): 91–98. http://dx.doi.org/10.1016/j.hydromet.2012.07.011.
Full textIMBIHL, R. "TURING STRUCTURES IN CATALYTIC SURFACE REACTIONS: THE FACETTING OF Pt(110) IN CO + O2." Modern Physics Letters B 06, no. 09 (April 20, 1992): 493–505. http://dx.doi.org/10.1142/s0217984992000570.
Full textKHAN, K. M., and K. IQBAL. "EXISTENCE OF A "HOT" ATOM MECHANISM FOR THE DISSOCIATION OF O2 ON Pt (111) AND THE PHASE DIAGRAM OF CATALYTIC OXIDATION OF CO." Surface Review and Letters 11, no. 01 (February 2004): 117–21. http://dx.doi.org/10.1142/s0218625x04005846.
Full textLi, Jian, Tuqiao Zhang, and Miaomiao Ye. "Heterogeneous oxidation of diclofenac in the presence of α-MnO2 nanorods: influence of operating factors and mechanism." Water Science and Technology 71, no. 9 (March 5, 2015): 1340–46. http://dx.doi.org/10.2166/wst.2015.068.
Full text