To see the other types of publications on this topic, follow the link: Lanthanide transition metal alloys.

Journal articles on the topic 'Lanthanide transition metal alloys'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Lanthanide transition metal alloys.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Chen, Rong, Chao-Long Chen, Ming-Hao Du, et al. "Soluble lanthanide-transition-metal clusters Ln36Co12 as effective molecular electrocatalysts for water oxidation." Chemical Communications 57, no. 29 (2021): 3611–14. http://dx.doi.org/10.1039/d0cc08132a.

Full text
Abstract:
The stable 48-metal Ln36Co12 clusters show an effective water oxidation activity under weak acidic conditions because of the synergistic effect between lanthanide and transition metals in O–O bond formation.
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Yeong-Hwan, Akihisa Inoue, and Tsuyoshi Masumoto. "Structural relaxation of aluminum-lanthanide metal-transition metal amorphous alloys upon low temperature annealing." Journal of Non-Crystalline Solids 127, no. 3 (1991): 233–41. http://dx.doi.org/10.1016/0022-3093(91)90475-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yaniv, Gili, Daniel Vidal, David Fuks, and Louisa Meshi. "Bonding and Stability of Ternary Structures in the CeT2Al20 (T=Ta, W, Re) and YRe2Al20 Alloys." Metals 10, no. 4 (2020): 422. http://dx.doi.org/10.3390/met10040422.

Full text
Abstract:
A-T-Al aluminides, where A = actinide, lanthanide or rare earth elements and T=transition metals, have attracted considerable attention as potential materials where heavy fermions may be formed. This led to the discovery of superconducting properties in cubic AT2Al20 compounds with CeCr2Al20-type crystal structure. Other Al-rich aluminides, belonging to these A-T-Al systems, exhibited different physical properties as a function of their crystal structure. Thus, predicting the stable structure of the Al-richest phase that will form in the A-T-Al systems is highly valuable. Stability of the crys
APA, Harvard, Vancouver, ISO, and other styles
4

Pham, Tien-Lam, Nguyen-Duong Nguyen, Van-Doan Nguyen, Hiori Kino, Takashi Miyake, and Hieu-Chi Dam. "Learning structure-property relationship in crystalline materials: A study of lanthanide–transition metal alloys." Journal of Chemical Physics 148, no. 20 (2018): 204106. http://dx.doi.org/10.1063/1.5021089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Jingfu, Wei Wang, Zhiping Zhu, Enbo Wang, and Zuoping Wang. "Synthesis and characterization of undecatungstotitanates incorporating a lanthanide or a transition metal." Transition Metal Chemistry 16, no. 2 (1991): 169–72. http://dx.doi.org/10.1007/bf01032826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Shengming, Pavel Poplaukhin, Errun Ding, et al. "Extended lanthanide–transition metal arrays with cyanide bridges: syntheses, structures, and catalytic applications." Journal of Alloys and Compounds 418, no. 1-2 (2006): 21–26. http://dx.doi.org/10.1016/j.jallcom.2005.10.080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Norgren, S., and J. ågren. "Enthalpies of formation of transition-metal lanthanide laves phases with the MgCu2 structure." Journal of Phase Equilibria 18, no. 5 (1997): 441–47. http://dx.doi.org/10.1007/bf02647700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Inoue, Akihisa, Bao Long Shen, and Akira Takeuchi. "Syntheses and Applications of Fe-, Co-, Ni- and Cu-Based Bulk Glassy Alloys." Materials Science Forum 539-543 (March 2007): 92–99. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.92.

Full text
Abstract:
This paper reviews our recent results of the formation, fundamental properties, workability and applications of late transition metal (LTM) base bulk glassy alloys (BGAs) developed since 1995. The BGAs were obtained in Fe-(Al,Ga)-(P,C,B,Si), Fe-(Cr,Mo)-(C,B), Fe-(Zr,Hf,Nb,Ta)-B, Fe-Ln-B(Ln=lanthanide metal), Fe-B-Si-Nb and Fe-Nd-Al for Fe-based alloys, Co-(Ta,Mo)-B and Co-B-Si-Nb for Co-based alloys, Ni-Nb-(Ti,Zr)-(Co,Ni) for Ni-based alloys, and Cu-Ti-(Zr,Hf), Cu-Al-(Zr,Hf), Cu-Ti-(Zr,Hf)-(Ni,Co) and Cu-Al-(Zr,Hf)-(Ag,Pd) for Cu-based alloys. These BGAs exhibit useful properties of high mecha
APA, Harvard, Vancouver, ISO, and other styles
9

Zhou, Youfu, Maochun Hong, and Xintao Wu. "Lanthanide–transition metal coordination polymers based on multiple N- and O-donor ligands." Chem. Commun., no. 2 (2006): 135–43. http://dx.doi.org/10.1039/b509458p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Burns, Corey P., Xin Yang, Siyoung Sung, et al. "Towards understanding of lanthanide–transition metal bonding: investigations of the first Ce–Fe bonded complex." Chemical Communications 54, no. 77 (2018): 10893–96. http://dx.doi.org/10.1039/c8cc05243c.

Full text
Abstract:
The syntheses, structural, and magnetic characterization of three new organometallic Ce complexes stabilized by PyCp<sub>2</sub><sup>2−</sup> (PyCp<sub>2</sub><sup>2−</sup> = [2,6-(CH<sub>2</sub>C<sub>5</sub>H<sub>3</sub>)<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N]<sup>2−</sup>) are reported.
APA, Harvard, Vancouver, ISO, and other styles
11

Xu, Dekang, Feiyan Xie, Lu Yao, et al. "Enhancing upconversion luminescence of highly doped lanthanide nanoparticles through phase transition delay." Journal of Alloys and Compounds 815 (January 2020): 152622. http://dx.doi.org/10.1016/j.jallcom.2019.152622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Friscic, Tomislav. "Solid-state assembly of metal-organic architectures." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C982. http://dx.doi.org/10.1107/s2053273314090172.

Full text
Abstract:
"Chemical reactions induced or sustained by mechanical force (mechanochemistry) have attracted considerable interest as a means to achieve cleaner and ""greener"" solvent-free synthesis of molecules and materials. Such reactions also provide an opportunity to explore molecular recognition and self-assembly without the interfering effects of bulk solvents, such as solubility, complexation with solvent, or solvolysis.[1] This presentation will highlight our recent exploration of solvent-free chemistry as a means to understand the assembly, templating and the collapse of porous metal-organic stru
APA, Harvard, Vancouver, ISO, and other styles
13

Nentwich, M., M. Zschornak, M. Sonntag, et al. "Structure variations within RSi2 and R 2Si3 silicides. Part II. Structure driving factors." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 76, no. 3 (2020): 378–410. http://dx.doi.org/10.1107/s2052520620003893.

Full text
Abstract:
To gain an overview of the various structure reports on RSi2 and R 2 TSi3 compounds (R is a member of the Sc group, an alkaline earth, lanthanide or actinide metal, T is a transition metal), compositions, lattice parameters a and c, ratios c/a, formula units per unit cell, and structure types are summarized in extensive tables and the variations of these properties when varying the R or T elements are analyzed. Following the structural systematization given in Part I, Part II focuses on revealing the driving factors for certain structure types, in particular, the electronic structure. Here, co
APA, Harvard, Vancouver, ISO, and other styles
14

Yaniv, Gili, David Fuks, and Louisa Meshi. "Explanation of structural differences and similarities between the AT2Al10 phases (where A=actinide, lanthanide or rare earth element and T=transition metal)." Zeitschrift für Kristallographie - Crystalline Materials 234, no. 9 (2019): 595–603. http://dx.doi.org/10.1515/zkri-2019-0007.

Full text
Abstract:
Abstract In the current work we have studied the crystallographic relationship between the AT2Al10 phases (where A = actinide, lanthanide and rare earth element and T = transition metal). It is known that with this stoichiometry two structure types exist: tetragonal CaCr2Al10 and orthorhombic YbFe2Al10. It was found that both CaCr2Al10 and YbFe2Al10 types are structural derivatives of the ThMn12 type structure (which has more general formula of ATxAl12−x, with x &gt; 2). CaCr2Al10 structure has a group-subgroup relationship with the ThMn12 structure, while the relationship of the YbFe2Al10 to
APA, Harvard, Vancouver, ISO, and other styles
15

Gaune-Escard, M., L. Rycerz, W. Szczepaniak, and A. Bogacz. "Enthalpies of phase transition in the lanthanide chlorides LaCl3, CeCl3, PrCl3, NdCl3, GdCl3, DyCl3, ErCl3 and TmCl3." Journal of Alloys and Compounds 204, no. 1-2 (1994): 193–96. http://dx.doi.org/10.1016/0925-8388(94)90091-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Richard, D., L. A. Errico, and M. Rentería. "Structural properties and the pressure-induced C → A phase transition of lanthanide sesquioxides from DFT and DFT + U calculations." Journal of Alloys and Compounds 664 (April 2016): 580–89. http://dx.doi.org/10.1016/j.jallcom.2015.12.236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kornienko, Anna, Louise Huebner, Deborah Freedman, Thomas J. Emge, and John G. Brennan. "Lanthanide−Transition Metal Chalcogenido Cluster Materials." Inorganic Chemistry 42, no. 25 (2003): 8476–80. http://dx.doi.org/10.1021/ic030204r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Inoue, Akihisa, and Tsuyoshi Masumoto. "Light-metal base amorphous alloys containing lanthanide metal." Journal of Alloys and Compounds 207-208 (June 1994): 340–48. http://dx.doi.org/10.1016/0925-8388(94)90237-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

KANEKO, Junichi, Takeshi MURAKAMI, and Norio FURUSHIRO. "Aluminum-transition metal alloys." Journal of Japan Institute of Light Metals 39, no. 2 (1989): 147–66. http://dx.doi.org/10.2464/jilm.39.147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Gu, Xiaojun, Dongfeng Xue, and Henryk Ratajczak. "Crystal engineering of lanthanide–transition-metal coordination polymers." Journal of Molecular Structure 887, no. 1-3 (2008): 56–66. http://dx.doi.org/10.1016/j.molstruc.2007.11.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dorenbos, P., A. H. Krumpel, E. van der Kolk, P. Boutinaud, M. Bettinelli, and E. Cavalli. "Lanthanide level location in transition metal complex compounds." Optical Materials 32, no. 12 (2010): 1681–85. http://dx.doi.org/10.1016/j.optmat.2010.02.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Øwre, Anders, Morten Vinum, Michal Kern, Joris van Slageren, Jesper Bendix, and Mauro Perfetti. "Chiral, Heterometallic Lanthanide–Transition Metal Complexes by Design." Inorganics 6, no. 3 (2018): 72. http://dx.doi.org/10.3390/inorganics6030072.

Full text
Abstract:
Achieving control over coordination geometries in lanthanide complexes remains a challenge to the coordination chemist. This is particularly the case in the field of molecule-based magnetism, where barriers for magnetic relaxation processes as well as tunneling pathways are strongly influenced by the lanthanide coordination geometry. Addressing the challenge of design of 4f-element coordination environments, the ubiquitous Ln(hfac)3 moieties have been shown to be applicable as Lewis acids coordinating transition metal acetylacetonates facially leading to simple, chiral lanthanide–transition me
APA, Harvard, Vancouver, ISO, and other styles
23

Beattie, J. K. "Monodisperse colloids of transition metal and lanthanide compounds." Pure and Applied Chemistry 61, no. 5 (1989): 937–41. http://dx.doi.org/10.1351/pac198961050937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ward, Michael D. "Mechanisms of sensitization of lanthanide(III)-based luminescence in transition metal/lanthanide and anthracene/lanthanide dyads." Coordination Chemistry Reviews 254, no. 21-22 (2010): 2634–42. http://dx.doi.org/10.1016/j.ccr.2009.12.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bligh, S. W. Annie, Nick Choi, Donovan St C. Green та ін. "Lanthanide and Transition Metal Complexes of Dialkyl α-Hydroxyiminophosphonates". Phosphorus, Sulfur, and Silicon and the Related Elements 111, № 1 (1996): 49. http://dx.doi.org/10.1080/10426509608054678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ikeda, Hirotaka, and Satoshi Inagaki. "Frontier Orbitals in Transition-Metal- and Lanthanide-Mediated Reactions." Bulletin of the Chemical Society of Japan 90, no. 1 (2017): 22–29. http://dx.doi.org/10.1246/bcsj.20160234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Richter, Joachim, Phil Liebing, and Frank T. Edelmann. "Early transition metal and lanthanide metallocenes bearing dihydroazulenide ligands." Inorganica Chimica Acta 475 (April 2018): 18–27. http://dx.doi.org/10.1016/j.ica.2017.06.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Yang, Xin, Corey P. Burns, Michael Nippe, and Michael B. Hall. "Unsupported Lanthanide–Transition Metal Bonds: Ionic vs Polar Covalent?" Inorganic Chemistry 60, no. 13 (2021): 9394–401. http://dx.doi.org/10.1021/acs.inorgchem.1c00285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bancel, Peter A., and Paul A. Heiney. "Icosahedral aluminum–transition-metal alloys." Physical Review B 33, no. 12 (1986): 7917–22. http://dx.doi.org/10.1103/physrevb.33.7917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Jiang, Liqiang, and Jiawei Sheng. "Enthalpies of formation of liquid binary lanthanide-metal alloys." Journal of Materials Science 40, no. 1 (2005): 207–10. http://dx.doi.org/10.1007/s10853-005-5708-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kimmel, G., and W. D. Kaplan. "A new phase transition phenomenon in gallium-lanthanide binary alloys." Scripta Metallurgica et Materialia 25, no. 3 (1991): 571–74. http://dx.doi.org/10.1016/0956-716x(91)90093-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Thunus, L., and R. Lejeune. "Overview of transition metal and lanthanide complexes as diagnostic tools." Coordination Chemistry Reviews 184, no. 1 (1999): 125–55. http://dx.doi.org/10.1016/s0010-8545(98)00206-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Plečnik, Christine E., Shengming Liu, and Sheldon G. Shore. "Lanthanide−Transition-Metal Complexes: From Ion Pairs to Extended Arrays." Accounts of Chemical Research 36, no. 7 (2003): 499–508. http://dx.doi.org/10.1021/ar010050o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Pukhov, K. K., T. T. Basiev, and Yu V. Orlovskii. "Radiative properties of lanthanide and transition metal ions in nanocrystals." Optics and Spectroscopy 111, no. 3 (2011): 386–92. http://dx.doi.org/10.1134/s0030400x11090219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bonde, Niels A., Jonatan B. Petersen, Mikkel A. Sørensen, et al. "Importance of Axial Symmetry in Elucidating Lanthanide–Transition Metal Interactions." Inorganic Chemistry 59, no. 1 (2019): 235–43. http://dx.doi.org/10.1021/acs.inorgchem.9b02064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Klink, Stephen I., Henk Keizer, and Frank C. J. M. van Veggel. "Transition Metal Complexes as Photosensitizers for Near-Infrared Lanthanide Luminescence." Angewandte Chemie 39, no. 23 (2000): 4319–21. http://dx.doi.org/10.1002/1521-3773(20001201)39:23<4319::aid-anie4319>3.0.co;2-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Duc, Nguyen Huu. "ChemInform Abstract: Giant Magnetostriction in Lanthanide-Transition Metal Thin Films." ChemInform 33, no. 47 (2010): no. http://dx.doi.org/10.1002/chin.200247221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Cava, R. J., H. W. Zandbergen, J. J. Krajewski, T. Siegrist, H. Y. Hwang, and B. Batlogg. "Ln3Cu4P4O2: A New Lanthanide Transition Metal Pnictide Oxide Structure Type." Journal of Solid State Chemistry 129, no. 2 (1997): 250–56. http://dx.doi.org/10.1006/jssc.1996.7225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Klink, Stephen I., Henk Keizer, and Frank C. J. M. van Veggel. "Transition Metal Complexes as Photosensitizers for Near-Infrared Lanthanide Luminescence." Angewandte Chemie 112, no. 23 (2000): 4489–91. http://dx.doi.org/10.1002/1521-3757(20001201)112:23<4489::aid-ange4489>3.0.co;2-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Sun, Daofeng, Rong Cao, Yucang Liang, and Maochun Hong. "A Novel Lanthanide–Transition Metal Complex Constructed by Orotic Acid." Chemistry Letters 30, no. 9 (2001): 878–79. http://dx.doi.org/10.1246/cl.2001.878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Enderby, J. E. "The metal-non-metal transition in liquid alloys." Journal of Non-Crystalline Solids 205-207 (October 1996): 28–31. http://dx.doi.org/10.1016/s0022-3093(96)00211-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Enderby, J. E., and A. C. Barnes. "Liquid Alloys and the Metal Non-Metal Transition*." Zeitschrift für Physikalische Chemie 156, Part_2 (1988): 529–35. http://dx.doi.org/10.1524/zpch.1988.156.part_2.529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Möbius, A., and C. J. Adkins. "Metal–insulator transition in amorphous alloys." Physica B: Condensed Matter 284-288 (July 2000): 1669–70. http://dx.doi.org/10.1016/s0921-4526(99)02839-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Rusakov, G., L. Son, E. Efimova, and N. Dubinin. "Ordering in binary transition metal alloys." Thermochimica Acta 532 (March 2012): 103–6. http://dx.doi.org/10.1016/j.tca.2010.11.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Möbius, A. "Metal–insulator transition in amorphous alloys." Current Opinion in Solid State and Materials Science 4, no. 3 (1999): 303–14. http://dx.doi.org/10.1016/s1359-0286(99)00032-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ducastelle, François, Bernard Legrand, and Guy Tréglia. "Surface Segregation in Transition Metal Alloys." Progress of Theoretical Physics Supplement 101 (1990): 159–80. http://dx.doi.org/10.1143/ptps.101.159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Dasgupta, Indra, Tanusri Saha-Dasgupta, Abhijit Mookerjee, and Gour Prasad Das. "Study of transition metal aluminide alloys." Journal of Physics: Condensed Matter 9, no. 17 (1997): 3529–41. http://dx.doi.org/10.1088/0953-8984/9/17/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Rao, Thatavarthi R., Genda Singh, and Israr A. Khan. "Coordinated lanthanide metal complexes ofN-benzoylglycine hydrazide." Transition Metal Chemistry 14, no. 1 (1989): 15–18. http://dx.doi.org/10.1007/bf01129751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Urgel, José I., David Ecija, Willi Auwärter, Daphné Stassen, Davide Bonifazi, and Johannes V. Barth. "Orthogonal Insertion of Lanthanide and Transition-Metal Atoms in Metal-Organic Networks on Surfaces." Angewandte Chemie 127, no. 21 (2015): 6261–65. http://dx.doi.org/10.1002/ange.201410802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Urgel, José I., David Ecija, Willi Auwärter, Daphné Stassen, Davide Bonifazi, and Johannes V. Barth. "Orthogonal Insertion of Lanthanide and Transition-Metal Atoms in Metal-Organic Networks on Surfaces." Angewandte Chemie International Edition 54, no. 21 (2015): 6163–67. http://dx.doi.org/10.1002/anie.201410802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!