Academic literature on the topic 'Lanthanides and actinides'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lanthanides and actinides.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Lanthanides and actinides"

1

Vassiliev, Valery P., Valery A. Lysenko, and Marcelle Gaune-Escard. "Relationship of thermodynamic data with Periodic Law." Pure and Applied Chemistry 91, no. 6 (June 26, 2019): 879–93. http://dx.doi.org/10.1515/pac-2018-0717.

Full text
Abstract:
Abstract Relationships between the various physical and chemical properties of isostructural compounds take place according to the Periodic Table that is a fundamental basis of Chemistry. The systematization of this approach, data vs. the Periodic Table, will contribute to further development of the solid state chemistry theory. The lanthanides and the actinides make up the f block of the Periodic Table. The lanthanides are the elements produced as the 4f sublevel is filled with electrons and the actinides are formed while filling the 5f sublevel. In this paper, we analyze some classes of compounds formed by the lanthanides with other elements of the Periodic Table, which can count into the thousands of binary compounds. The special place of lanthanides in the Periodic System of Elements made it possible to establish strict nonlinear relationships between the standard entropy and the lanthanide atomic number of the compounds Ln2X3 (X = O, S, Se, Te), LnN, LnB4, and LnF3 in the solid state. This relationship, based on tetrad-effect, can be applied to other physical and chemical properties of the isostructural compounds. The thermodynamic properties of actinides have been studied much less than lanthanides, but the similarity of physicochemical properties makes it possible for us to estimate, with sufficient accuracy, unexplored properties using fundamental laws. One of these laws is the tetrad-effect concept that is an effective tool to predict missing thermodynamic values for lanthanide and actinide compounds and to rationally plan experiments.
APA, Harvard, Vancouver, ISO, and other styles
2

Stennett, Martin C., Matthew L. Hand, and Neil C. Hyatt. "Decontamination of Molten Salt Wastes for Pyrochemical Reprocessing of Nuclear Fuels." MRS Proceedings 1518 (2013): 97–102. http://dx.doi.org/10.1557/opl.2013.162.

Full text
Abstract:
ABSTRACTPyrochemical reprocessing of nuclear fuels, in which electrochemical separation of actinides and fission products is mediated by a molten alkali chloride salt (typically a LiCl-KCl eutectic) is of interest for future nuclear energy cycles. A key challenge in the management of pyrochemical reprocessing wastes is decontamination and recycling of the molten salt medium to remove entrained actinides and radioactive lanthanide fission products. Since pyrochlore oxides are promising candidates for the immobilisation of lanthanides and actinides, we sought to use the “problematic” molten salt to our advantage as a reaction medium for low temperature synthesis of titanate pyrochlores. Through control of reaction time and temperature, we demonstrated the synthesis of lanthanide pyrochlores at temperatures as low as 700 °C in 1 h, compared to 1350 °C in 36 h for conventional solid state synthesis. The importance of this study is in demonstrating the potential feasibility for decontamination of pyrochemical reprocessing wastes by simple addition of TiO2 to form lanthanide and actinide pyrochlores by rapid molten salt assisted reaction at moderate temperature.
APA, Harvard, Vancouver, ISO, and other styles
3

Williams, Neil J., Chi-Linh Do-Thanh, Joseph J. Stankovich, Huimin Luo, and Sheng Dai. "Extraction of lanthanides using 1-hydroxy-6-N-octylcarboxamido-2(1H)-pyridinone as an extractant via competitive ligand complexations between aqueous and organic phases." RSC Advances 5, no. 129 (2015): 107054–57. http://dx.doi.org/10.1039/c5ra23443c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ernst, Richard D., and Tobin J. Marks. "Lanthanides and actinides." Journal of Organometallic Chemistry 318, no. 1-3 (January 1987): 29–82. http://dx.doi.org/10.1016/s0022-328x(00)99376-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rogers, Robin D., and Lillian M. Rogers. "Lanthanides and actinides." Journal of Organometallic Chemistry 416, no. 1-3 (September 1991): 201–90. http://dx.doi.org/10.1016/0022-328x(91)80149-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vodianitsky, Yu, N. Kosareva, and A. Savichev. "LANTANIDES (Y, La, Ce, Pr, Nd, Sm) AND ACTINIDS (Th, U) IN SOILS OF THE HIBINO-LOVOZERO PROVINCE." Dokuchaev Soil Bulletin, no. 65 (June 30, 2010): 75–86. http://dx.doi.org/10.19047/0136-1694-2010-65-75-86.

Full text
Abstract:
In the Khibinsko-Lovozero district of the Kola Peninsula, the territory is divided into three geochemically different areas. In the background area near Umbozero, both mineral and peated samples contain all rare metals below clark: lanthanides and actinides are leaching heavily from acidic podzolic soils. В in the area of weak geochemical anomaly (near Lovozero), all lanthanides are inherited from the loparite-containing rock, and all actinides - Th: their content is 1.3-5.4 times higher than the clark value. In the zone of a strong geochemical anomaly (on the northern shore of Seidozero and on theThe concentration of lanthanides and actinides is even higher: 4-9 times higher than the clark value. There is an impact of a biological barrier that prevents excessive accumulation of of heavy metals in the mosses of a geochemical anomaly.
APA, Harvard, Vancouver, ISO, and other styles
7

Lan, Jian-hui, Shi-lin Jiang, Ya-lan Liu, Xue-miao Yin, Ya-xing Wang, Tai-qi Yin, Shu-ao Wang, Cong-zhi Wang, Wei-qun Shi, and Zhi-fang Chai. "Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives." Radiochimica Acta 107, no. 9-11 (September 25, 2019): 951–64. http://dx.doi.org/10.1515/ract-2019-3110.

Full text
Abstract:
Abstract Developing necessary reprocessing techniques to meet the remarkable increase of spent nuclear fuels (SNFs) is crucial for the sustainable development of nuclear energy. This review summarizes recent research progresses related to the SNF reprocessing in China, with an emphasis on actinides separation over lanthanides through three different techniques, hydrometallurgical reprocessing, pyrometallurgical processes, and selective crystallization based separation. Some future perspectives with respect to advanced actinide separation are also given.
APA, Harvard, Vancouver, ISO, and other styles
8

Halleröd, Jenny, Christian Ekberg, Elin Löfström-Engdahl, and Emma Aneheim. "Development of the Chalmers Grouped Actinide Extraction Process." Nukleonika 60, no. 4 (December 1, 2015): 829–35. http://dx.doi.org/10.1515/nuka-2015-0115.

Full text
Abstract:
Abstract Several solvents for Grouped ActiNide EXtraction (GANEX) processes have been investigated at Chalmers University of Technology in recent years. Four different GANEX solvents; cyclo-GANEX (CyMe4- -BTBP, 30 vol.% tri-butyl phosphate (TBP) and cyclohexanone), DEHBA-GANEX (CyMe4-BTBP, 20 vol.% N,N-di-2(ethylhexyl) butyramide (DEHBA) and cyclohexanone), hexanol-GANEX (CyMe4-BTBP, 30 vol.% TBP and hexanol) and FS-13-GANEX (CyMe4-BTBP, 30 vol.% TBP and phenyl trifluoromethyl sulfone (FS-13)) have been studied and the results are discussed and compared in this work. The cyclohexanone based solvents show fast and high extraction of the actinides but a somewhat poor diluent stability in contact with the acidic aqueous phase. FS-13-GANEX display high separation factors between the actinides and lanthanides and a good radiolytic and hydrolytic stability. However, the distribution ratios of the actinides are lower, compared to the cyclohexanone based solvents. The hexanol-GANEX is a cheap solvent system using a rather stable diluent but the actinide extraction is, however, comparatively low.
APA, Harvard, Vancouver, ISO, and other styles
9

Bhattacharyya, Arunasis, and Prasanta K. Mohapatra. "Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review." Radiochimica Acta 107, no. 9-11 (September 25, 2019): 931–49. http://dx.doi.org/10.1515/ract-2018-3064.

Full text
Abstract:
Abstract Separation of trivalent actinide (An) and lanthanide (Ln) elements is one of the burning topics in the back end of the nuclear fuel cycle due to the similarity in their chemical behaviour. A significant amount of research is being carried out worldwide to develop suitable ligands for the separation of the trivalent actinides and lanthanides. Some of the research groups are engaged in continuous improvement of the di-ethylene-triamine-penta acetic acid (DTPA) based Ln/An separation method, whereas extensive research is going on for the development of the lipophilic and hydrophilic ‘N’ donor heteropolycyclic ligands as the actinide selective ligand. A number of ‘S’ donor ligands are also explored for the Ln/An separation. In the present review, we made an attempt to highlight various separation processes based on soft donor ligands developed for Ln/An separations. Beside the conventional solvent extraction processes, separation possibilities membrane based and solid phase extraction techniques are evaluated for the Ln/An separation and are compiled in the present review.
APA, Harvard, Vancouver, ISO, and other styles
10

Hlava, P. F. "Problems in electron microprobe analysis of the lanthanides: The x-ray lines." Proceedings, annual meeting, Electron Microscopy Society of America 48, no. 2 (August 12, 1990): 200–201. http://dx.doi.org/10.1017/s0424820100134594.

Full text
Abstract:
Electron microprobe analysis of materials that contain the lanthanide series of rare earth elements (REE) in natural abundance ratios presents a difficult and truly unique set of problems due to the their chemical and crystallographic similarity and the complexity of the L-spectra used for analysis. REEs differ from one another by the number of protons in their nuclei and the number of electrons in their second inner shell. There are two series of REEs - the lanthanides, from atomic number 58 through 71 and the actinides from 90 through 103. By convention, when most workers speak of the REEs they refer to the lanthanides plus lanthanum, often yttrium and rarely scandium (because these elements are geochemically associated with the lanthanides proper). The terms REE and lanthanide, when used in this paper, will refer to elements of atomic number 57 through 71. In all of these elements the two outer shells, where the valence electrons reside, are essentially identical resulting in chemical behavior that is also essentially identical.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Lanthanides and actinides"

1

He, Mingjian. "Complexation d'actinides et d'analogues par des ligands hydroxamates." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS413/document.

Full text
Abstract:
L’augmentation des activités humaines dans le domaine nucléaire civil comme militaire est à l’origine d’une dissémination effective ou potentielle de radionucléides dans l’environnement. Leur mobilité dépend de plusieurs facteurs tels que le pH, la force ionique, le degré d’oxydation et la présence de ligands organiques. Afin de garantir la sûreté de sites d’entreposage ou de stockage, de développer des procédés de remédiation de sols contaminés, il est nécessaire de disposer de données fondamentales sur les interactions entre actinides et ligands organiques susceptibles d’être présents dans l’environnement, vecteurs de migration ou de piégeage de ces radioéléments. Dans ce contexte, l’étude s’est axée sur les interactions entre Th(IV), U(IV,VI), Cf(III) and Eu(III) et des dérivés hydroxamates, en particulier, la desferrioxamine B, un sidérophore bactérien comportant trois fonctions hydroxamiques. Les constantes de formation des complexes sont déterminées en fonction de l’acidité et de la concentration de ligand à force ionique et température fixées en mettant en jeu plusieurs techniques expérimentales et des concentrations en élément comprises entre 10⁻¹⁰ et 10⁻³ M (extraction liquide-liquide combinée à une détection par spectrométrie γ, électrophorèse capillaire avec détection UV, spectrophotométrie d’absorption UV-visible). L’approche thermodynamique de cette étude est complétée par une étude structurale à l’aide de techniques spectroscopiques telles que la spectroscopie infrarouge à transformée de Fourier et de la spectroscopie d’absorption des rayons X. Ces mesures expérimentales sont alors confrontées à des calculs théoriques (DFT), afin de déterminer l’arrangement structural du métal et les distances interatomiques
Due to the increasing human activities in the civilian nuclear fields, the actual and potential release of radionuclides into the environment is a matter of concern. The mobility of radio-nuclides depends on several factors such as pH, ionic strength, oxidation state and the presence of organic ligands. In order to guarantee the safety of radioactive waste storage sites and to develop contaminated soil remediation processes, it is necessary to have fundamental data on actinides and natural organic ligands interactions. This study focuses on the interaction between Th(IV), U(IV,VI), Cf(III) and Eu(III) and hydroxamates derivatives, desferrioxamine B, a bacterial siderophore with three hydroxamic functions. The stability constants of complexes are determined as function of acidity and ligand concentration, at fixed ionic strength and temperature, using several techniques and metal concentrations ranging from 10⁻¹⁰ to 10⁻³ M (liquid-liquid extraction coupled with γ-spectrometry, capillary electrophoresis with UV detection, UV-Vis absorption spectrophotometry). The thermodynamic study is supplemented by a structural one using spectroscopic techniques such as Fourier transform infrared spectroscopy and X-ray absorption spectroscopy. Experimental measurements are compared with quantum chemistry calculations (DFT) in order to determine the coordination geometry of the metal ion and the interatomic distances
APA, Harvard, Vancouver, ISO, and other styles
2

Sorin, Antoire. "Séparation actinides (III) lanthanides (III) par nanofiltration assistée par complexation /." [Gif-sur-Yvette] : [CEA Saclay, Direction des systèmes d'information], 2006. http://catalogue.bnf.fr/ark:/12148/cb402306421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sorin, Antoine. "Séparation actinides(III)-lanthanides(III) par nanofiltration assistée par complexation." Lyon 1, 2006. http://www.theses.fr/2006LYO10001.

Full text
Abstract:
Ces travaux de thèse ont pour objectif la séparation actinides (III) / lanthanides (III) par un procédé de nanofiltration assistée par complexation. Ainsi, un pilote de filtration membranaire tangentielle a été conçu et implanté dans une boîte à gants d'un laboratoire de l'installation ATALANTE du CEA-Marcoule. Une caractérisation physico-chimique de la membrane Desal GH (OSMONICS), retenue pour réaliser la séparation An(III)/Ln(III), a été effectuée pour déterminer notamment le potentiel zêta de la couche active et sa tenue aux rayonnements ionisants. En outre, une étude paramétrique a également été réalisée pour optimiser la sélectivité de complexation, et les conditions opératoires de rétention des complexes. Enfin, la séparation de traces d'Am(III) contenues dans un mélange de Ln(III), simulant la charge réelle issue d'un cycle de retraitement, a été évaluée avec plusieurs complexants de type acide polyaminocarboxylique en fonction de pH de la solution et de la quantité de ligand
APA, Harvard, Vancouver, ISO, and other styles
4

Mostapha, Sarah. "Complexation des actinides et des lanthanides avec les nucléotides d'adénosine phosphate." Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20181/document.

Full text
Abstract:
Les composés organophosphorés sont des molécules importantes aussi bien dans le domaine de l'industrie nucléaire que pour les systèmes vivants. En effet, plusieurs extractants à la base de procédés du cycle de retraitement du combustible sont des molécules organophosphorées (TBP, HDEHP par exemple) et dans le domaine biologique les nucléotides sont des organophosphates qui jouent un rôle très important dans différents processus métaboliques.Si la littérature concernant les interactions des phosphates inorganiques avec les actinides est abondante, les études publiées avec des composés organophosphates se limitent généralement à des approches macroscopiques et/ou physiologiques. L'objectif de cette thèse est d'étudier la structure des plusieurs molécules organophosphorées avec des actinides pour affiner la compréhension et développer de nouveaux édifices spécifiques. La famille de molécules retenue pour cette approche est composée de 3 nucléotides d'adénine mono, bi et triphosphate (AMP, adénosine monophosphate – ADP, adénosine diphosphate - ATP, adénosine triphosphate) et d'un aminoalkylphosphate (AEP, O-phosphoryléthanolamine). La synthèse en milieu aqueux et faiblement acide (2,8-4) de plusieurs lanthanides représentants des actinides(III) (Lu, Yb, Eu) et d'actinides (U(VI), Th(IV) et Am(III)) a été réalisée. Plusieurs techniques analytiques et spectroscopiques ont été employées pour décrire la structure des complexes obtenus: les analyses spectrométriques réalisées par FTIR et RMN ont permis d'identifier les groupes fonctionnels impliqués dans la complexation, les analyses par ESI-MS et par titrage pH-métrique ont permis d'affiner la spéciation en solution et les analyses par EXAFS réalisées sur la ligne MARS du synchrotron SOLEIL, ont permis de décrire l'environnement proche des cations, tant pour des composés solides que pour des solutions. Quelques approches théoriques par DFT pour identifier des structures stables ont complété les approches expérimentales.Tous les complexes solides (AMP, ADP, ATP et AEP) présentent des organisations polynucléaires, alors que les complexes d'ATP en solution sont mononucléaires. Dans tous les complexes synthétisés, l'interaction prépondérante entre les cations et les groupes phosphates des ligands a été démontrée. Les complexes avec les ligands monophosphatés (Lu-AMP, Lu-AEP et Th-AMP) s'organisent de manière identique avec des phosphates pontants indiquant que la partie organique n'a pas un effet important sur leurs structures.Les complexes solides d'ADP et d'ATP (avec les deux ions métalliques sphéroïdes Lu et Th) présentent beaucoup de similitudes au niveau de l'environnement local indiquant que la présence d'un troisième groupe phosphate n'a pas d'effet important sur l'organisation des complexes au niveau local. La structure fine de ces complexes n'a cependant pas pu être déterminée précisément, malgré les approches théoriques qui ont été menées.Les complexes de lanthanides et d'actinides avec l'ATP ont un comportement similaire au niveau macroscopique suggérant une structure identique au niveau moléculaire.Avec l'uranyle, le complexe U-AMP à pH acide montre une organisation moléculaire différente de celui préparée à pH basique mais avec les mêmes sites de coordination: phosphates et hydroxyles du sucre
Organophosphorus compounds are important molecules in both nuclear industry and living systems fields. Indeed, several extractants of organophosphorus compounds (such as TBP, HDEHP) are used in the nuclear fuel cycle reprocessing and in the biological field, the nucleotides are organophosphates which play a very important role in various metabolic processes. If the literature on the interactions of actinides with inorganic phosphate is abundant, published studies with organophosphate compounds are generally limited to macroscopic and / or physiological approaches. The objective of this thesis is to study the structure of several organophosphorus compounds with actinides to refine a better understanding and develop new specific buildings blocks. The family of the chosen molecules for this approach consists of three adenine nucleotides mono, bi and triphosphate (AMP, adenosine monophosphate - ADP, adenosine diphosphate - ATP, adenosine triphosphate) and an aminoalkylphosphate (AEP O-phosphorylethanolamine). Complexes Synthesis was conducted in aqueous medium and weakly acidic (2.8-4) for several representatives of lanthanides considered as actinides (III) (Lu, Yb, Eu) and actinides (U (VI), Th (IV) and Am (III)). Several analytical and spectroscopic techniques have been used to describe the organization of the synthesized complexes: spectrometric analysis performed by FTIR and NMR were used to identify the functional groups involved in the complexation, analysis by ESI-MS and pH-metric titration were used to determine the solution speciation and EXAFS analyzes were performed on Mars beamline of the SOLEIL synchrotron, have described the local cation environment, for both solution and solid compounds. Some theoretical approaches of DFT were conducted to identify stable structures in purpose of completing the experimental approaches. All solid complexes (AMP, ADP, ATP and AEP) have polynuclear structures, while soluble ATP complexes are mononuclear. For all synthesized complexes, it has been demonstrated that the dominant interaction is between the cations and the phosphate groups of the ligands. Complexes with monophosphate ligands (AMP-Lu, Lu-Th-AEP and AMP) show similar organizations with bridging phosphates indicating that the organic part does not have a significant effect on their structures. ADP and ATP solid state complexes (with two spheroid metal ions: Lu and Th) show several similarities in terms of local environment indicating that the occurrence of a third phosphate group has no significant effect on the local organization of the complex. However, despite the theoretical approaches that have been conducted, the fine structure of these complexes has not been accurately determined, Complexes of lanthanides and actinides with ATP behave similarly at macroscopic level suggesting an identical structure at the molecular level for these complexes.With uranyl, U-AMP complexe synthesized at acidic pH show different behavior at molecular level than that observed at alkaline pH but the same coordination sites (phosphates and hydroxyls ribose groups) have been demonstrated for both complexes
APA, Harvard, Vancouver, ISO, and other styles
5

Marjolin, Aude. "Modélisation statique et dynamique de cations lanthanides et actinides en solution." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2012. http://tel.archives-ouvertes.fr/tel-00833263.

Full text
Abstract:
Dans cette thèse nous proposons une stratégie de modélisation intégrée, basée sur des approches quantiques d'analyse et des approches classiques de simulations de dynamique moléculaire pour l'étude de complexes d'éléments-f. Dans une première partie, nous introduisons les différentes méthodes de chimie quantique adaptées à l'étude des éléments-f et les utilisons pour le calcul de géométrie et d'énergie d'interaction de systèmes [M-(OH2)]m+. Nous utilisons ensuite des techniques d'analyse de décomposition de l'énergie d'interaction afin de quantifier la nature physique de l'interaction métal-ligand en fonction des différentes contributions énergétiques. Ces contributions seront utilisées pour la paramétrisation des champs de forces polarisables AMOEBA et SIBFA. Dans un deuxième temps, nous établirons des courbes de dissociation diabatique de référence qui seront utilisées pour la paramétrisation du champ de forces AMOEBA. Nous proposons ensuite un protocole de validation des paramètres en trois étapes ainsi qu'une première application qui est le calcul de l'énergie libre d'hydratation de Gibbs des cations d'éléments-f. Nous apportons de plus une extension du potentiel SIBFA à des cations trivalents et tétravalents lanthanides et actinides. Enfin dans une dernière partie, nous utilisons des outils d'analyse topologique de la liaison chimique covalente (ELF) et non covalente (NCI) afin d'investiguer la nature des interactions en jeu, d'une part dans des systèmes modèles et d'autre part sur un complexe réel de Gadolinium(III). Le but de cette thèse est de développer et d'employer différentes approches théoriques afin de pouvoir discriminer entre eux les différents cations
APA, Harvard, Vancouver, ISO, and other styles
6

Hamel, Céline. "Séparation actinides-lanthanides (néodymes) par extraction électrolytique en milieux fluorures fondus /." [Gif-sur-Yvette] : [CEA Saclay, Direction des systèmes d'information], 2005. http://catalogue.bnf.fr/ark:/12148/cb40074567j.

Full text
Abstract:
Thèse de doctorat--Génie des procédés--Université Paul Sabatier-Toulouse 3, 2005.
La p. de titre porte en plus : "Direction de l'énergie nucléaire" Bibliogr. f. 177-186. Résumé en français et en anglais.
APA, Harvard, Vancouver, ISO, and other styles
7

Hamel, Céline. "Séparation actinides-lanthanides (néodyne) par extraction électrolytique en milieux fluorures fondus." Toulouse 3, 2005. http://www.theses.fr/2005TOU30034.

Full text
Abstract:
Cette étude concerne les séparations An-Ln et Ln-solvant par extraction électrolytique en milieux de fluorures fondus. Trois éléments ont été sélectionnés : le néodyme, l'uranium et le plutonium. Afin d'évaluer la séparation de ces composés, leur étude électrochimique en milieux de fluorures fondus a tout d'abord été réalisée. Elle a conduit à la détermination des mécanismes de réduction de ces composés et des potentiels standards apparents des couples U(III)/U(0), Pu(III)/Pu(0) et Nd(III)/Nd(0) dans le solvant LiF-CaF2. D'après les écarts de potentiels mesurés, les séparations U-Nd et Pu-Nd sont envisageables avec un taux de récupération des actinides de 99,99%. Cependant, l'écart de potentiel Nd-solvant reste insuffisant pour une récupération quantitative du Nd. Le mémoire a ensuite traité de l'extraction de ces 3 éléments par dépôts sur électrode solide. Il a été montré l'instabilité des dépôts massifs de U et de Nd sur cathode inerte. L'utilisation d'une cathode réactive a été étudiée, elle conduit bien à l'amélioration des séparations Pu-Nd et Nd-solvant. La formation d'alliages liquide avec le Ni stabilise le métal déposé et facilite ainsi la récupération de ces trois éléments
This study concerns the An-Ln and Ln-Solvent separation by electrolytical extraction in molten fluoride media. Three elements are selected: neodymium, uranium and plutonium. Firstly, the electrochemical study of these three compounds in molten fluoride media is performed to evaluate the separations. Electrodeposition processes are studied and the values of formal potentials of U(III)/U(0), Pu(III)/Pu(0) and Nd(III)/Nd(0) are obtained in LiF-CaF2. Thermodynamically, the values of potentials differences are enough to separate U-Nd and Pu-Nd with a yield of extraction of 99. 99%. Concerning the Nd-solvent separation this potential difference is too small. Next, the electrodeposition of solid metals on inert electrodes is performed. This study showed the unstability of U and Nd deposits and the presence of salts in the dendritic U metal. Finally, a reactive cathode is used to improve these results. On Ni electrodes, we shown an improvement of the Pu-Nd and the Nd-solvent separation. Moreover, U and Nd metal are stabilized in the alloy. The formation of liquids alloys makes also easier the recovery of these three elements
APA, Harvard, Vancouver, ISO, and other styles
8

O'Sullivan, Julie Ann. "Metal complexes of trimethylsilyl substituted cyclooctatetraenes." Thesis, University of Sussex, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lagrelette, Mickaël. "Synthèse et étude des propriétés de complexation de chélatants hydroxamiques vis-à-vis des lanthanides et des actinides." Dijon, 2008. http://www.theses.fr/2008DIJOS074.

Full text
Abstract:
Ce travail concerne la conception de récepteurs moléculaires mono-, di- ou tétrafonctionnalisés par des chélatants de type acide hydroxamique « inversé » ou « normal » en vue d’une séquestration sélective des ions actinides(IV) vis-à-vis des ions lanthanides(III) dans le cadre de la gestion des déchets nucléaires. La mise au point de nouvelles stratégies de synthèse a conduit à l’obtention de plusieurs ligands hydroxamiques constitués de plates-formes di- ou tétraazotées linéaires, ramifiées ou tétraazamacrocycliques (cyclame ou cyclène) sur lesquelles sont ancrées les fonctions hydroxamiques. Ces nouveaux agents chélatants ont été caractérisés par plusieurs techniques d’analyse telles que les spectroscopies RMN 1H et 13C, infrarouge, spectrométrie de masse et potentiométrie. L’acide N-méthylacétohydroxamique, a servi de modèle lors des études de complexation et la résolution de la première structure cristallographique d’un complexe tétraleptique de zirconium(IV) par ce ligand a été décrite. Les études de complexation avec les ligands tétrafonctionnalisés vis-à-vis des lanthanides et des actinides ont révélé la formation de polymères de coordination qui s’explique par la grande flexibilité des chaînes chélatantes. La complexation par les ligands dihydroxamiques a conduit à la formation de complexes mono- et dileptiques de lanthanides(III) ainsi que la formation exclusive de complexes dileptiques de Th(IV) et de Zr(IV). La détermination des constantes de stabilité des complexes formés avec les ligands hydroxamiques a confirmé une plus grande stabilité des complexes de Th(IV) et Zr(IV) par rapport aux complexes de lanthanides(III)
This work presents the synthesis of mono-, di- or tetrafunctionalized molecular chelates bearing « retro » or « normal » hydroxamic acid functions in order to selectively complex actinide(IV) ions versus lanthanide(III) ions for a better management of nuclear wastes. The conception of new synthetic strategies has led to hydroxamic ligands composed of linear di- or tetraaza, or tetraazamacrocyclic platforms (cyclam or cyclen) on which the hydroxamic functions were anchored. These new chelators were characterized using 1H and 13C NMR, infrared, mass spectrometry and potentiometry. The N-methylacetohydroxamic acid has been used as model for the complexation studies. The resolution of the first X-ray structure of a tetraleptic zirconium(IV) complex with this ligand has been reported. The complexation studies of the tetrafunctionalized ligands with lanthanides and actinides led to the formation of coordination polymers, which can be explained by a too high flexibility of chelate chains. During the complexation by the dihydroxamic ligands, the formation of mono- and dileptic lanthanide(III) complexes was evidenced but solely dileptic Th(IV) and Zr(IV) complexes were characterized. The stability constant measurements for the dihydroxamic ligands have confirmed a higher stability of Th(IV) and Zr(IV) complexes in comparison with lanthanide(III) complexes
APA, Harvard, Vancouver, ISO, and other styles
10

Potter, Natalie Alison. "Synthesis of f-block complexes in a polypyrrolic macrocyclic environment." Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/9562.

Full text
Abstract:
In this thesis, the chemistry of lanthanide and actinide complexes of Schiff-base, polypyrrolic macrocyclic ligands has been evaluated. Chapter one introduces some general chemistry of uranium before focussing on uranium(III) and (IV) coordination complexes of nitrogen donor ligands. The surface chemistry of uranium metal is also briefly discussed along with the synthesis of uranium borohydride, hydride and alkyl complexes. Chapter two describes the synthesis and characterisation of the monometallic complexes [M(L)] or [M(HL)], where M = Y, Ce, and U, of the octadentate Schiffbase pyrrole macrocycle H4L. In particular, these complexes display a new binding mode of the macrocycle which leads to the formation of the unique trinuclear supramolecular complexes [M(HL)]3, (M = Ce, Y). Reactions of these materials towards hydrolysis, oxygen sources and other metal reagents are also exemplified. Chapter three details the synthesis and characterisation of the bimetallic complexes, [(MX)2(L)], where M = Ce, U, and Np and X = I or Cl, and [(MX2)2(L)], where M = U, and the attempts to transform these complexes into metal hydrides via their borohydrides. The solid state variable temperature magnetism of the binuclear U(III) and Np(III) complexes was recorded and was found to be consistent with the formation of iodide-bridged, polymeric structures. Chapter four explores the synthesis and reactions of adducts between UI3 and neutral macrocyclic ligands that incorporate either oxygen or nitrogen donors such as crown ethers and cyclam, respectively. The new synthesis of the key starting material, unsolvated UI3 is also outlined, along with the full characterisation of UI4(OEt)2.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Lanthanides and actinides"

1

Lanthanides and actinides. New York: Oxford University Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cotton, Simon. Lanthanides and actinides. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-11904-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brian, Nordstrom, ed. Lanthanides and actinides. New York, NY: Facts on File, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Layfield, Richard A., and Muralee Murugesu, eds. Lanthanides and Actinides in Molecular Magnetism. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527673476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

The 15 lanthanides and the 15 actinides. New York: Rosen Central, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cardin, D. J., S. A. Cotton, M. Green, and J. A. Labinger, eds. Organometallic Compounds of the Lanthanides, Actinides and Early Transition Metals. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4899-7164-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lanthanide and actinide chemistry. Hoboken, NJ: Wiley, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cotton, Simon. Lanthanide and Actinide Chemistry. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470010088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Meyer, G., and L. R. Morss, eds. Synthesis of Lanthanide and Actinide Compounds. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3758-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dolg, Michael. Computational methods in lanthanide and actinide chemistry. Chichester, West Sussex: John Wiley & Sons, Inc., 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Lanthanides and actinides"

1

Cotton, Simon. "The actinides." In Lanthanides and actinides, 85–169. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-11904-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cotton, Simon. "The lanthanides." In Lanthanides and actinides, 10–84. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-11904-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cotton, Simon. "Scandium." In Lanthanides and actinides, 1–9. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-11904-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Canich, J. M., and G. L. Gard. "Of the Lanthanides and Actinides." In Inorganic Reactions and Methods, 296–98. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145180.ch180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Roundhill, D. Max. "Extraction of Actinides and Lanthanides." In Extraction of Metals from Soils and Waters, 193–230. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-5204-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rehder, Dieter. "Early Transition Metals, Lanthanides and Actinides." In Multinuclear NMR, 479–519. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1783-8_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kaltsoyannis, Nikolas, and Andrew Kerridge. "Chemical Bonding of Lanthanides and Actinides." In The Chemical Bond, 337–56. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527664658.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sessoli, Roberta, and Kevin Bernot. "Lanthanides in Extended Molecular Networks." In Lanthanides and Actinides in Molecular Magnetism, 89–124. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527673476.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sharples, Joseph W., and David Collison. "Lanthanides and the Magnetocaloric Effect." In Lanthanides and Actinides in Molecular Magnetism, 293–314. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527673476.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liddle, Stephen T., and Joris van Slageren. "Actinide Single-Molecule Magnets." In Lanthanides and Actinides in Molecular Magnetism, 315–40. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527673476.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Lanthanides and actinides"

1

Zhu, Liyang, Wuhua Duan, Jingming Xu, and Yongjun Zhu. "Extraction of Actinides and Lanthanides by Supercritical Fluid." In 18th International Conference on Nuclear Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/icone18-29914.

Full text
Abstract:
Reprocessing of used nuclear fuel and treatment of nuclear waste are important issues for the sustainable development of nuclear energy. It is necessary to develop novel nuclear waste treatment technologies to meet the goal of minimizing the secondary liquid waste. Supercritical fluids are considered green solvents in chemical engineering process. It gains growing interest to treat nuclear waste using supercritical fluid extraction recently, because it can greatly decrease the secondary liquid waste with high radioactivity. During the past two decades, extraction of actinides and lanthanides by supercritical fluid has been intensively studied in some countries, and many important progresses have been made. However, the prospect of industrial application of supercritical fluid extraction technology in reprocessing of used nuclear fuel and treatment of nuclear waste is still unclear. In this paper, extraction of actinides and lanthanides from various matrixes or from their oxides by supercritical fluid including the experimental results, extraction mechanism and kinetic process was reviewed. The engineering demonstration projects were introduced. The trend of industrial application of supercritical fluid extraction technology in nuclear waste management was also discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Moulin, Christophe, Pierre Decambox, Patrick Mauchien, and Valerie Moulin. "Time-resolved laser-induced fluorescence for lanthanides and actinides analysis." In Photonics West '95, edited by Gregory J. Quarles, Leon Esterowitz, and Lap K. Cheng. SPIE, 1995. http://dx.doi.org/10.1117/12.206494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gueroult, R., and N. J. Fisch. "Practicality of a plasma mass filter for nuclear fuel reprocessing: Separating lanthanides from actinides." In 2013 IEEE Pulsed Power and Plasma Science Conference (PPPS 2013). IEEE, 2013. http://dx.doi.org/10.1109/ppc.2013.6627568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gueroult, Renaud, and Nathaniel J. Fisch. "Practicality of a plasma mass filter for nuclear fuel reprocessing: Separating lanthanides from actinides." In 2013 IEEE 40th International Conference on Plasma Sciences (ICOPS). IEEE, 2013. http://dx.doi.org/10.1109/plasma.2013.6634838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dozol, J. F. "Extraction of lanthanides and actinides from H. A. Waste by calix[4]arenes bearing CMPO units." In Plutonium futures-The science (Topical conference on Plutonium and actinides). AIP, 2000. http://dx.doi.org/10.1063/1.1292211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Modolo, G., S. Seekamp, and H. Vijgen. "DIAMEX Process Development to Separate Trivalent Actinides From High Active Concentrates." In ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4812.

Full text
Abstract:
The DIAMEX process is one of the most promising processes for partitioning the trivalent actinides from the highly active raffinates (HARs) coming from the PUREX process. In the present work, experiements for the definition of a DIAMEX process for treating high-active concentrates (HACs), the product after the concentration and denitration of HAR, have been performed. Within the DIAMEX process, oxalic acid has to be added to the DIAMEX feed in order to prevent third-phase formation due to co-extraction of some fission products, e.g. Zr and Mo. However, the experimental results indicate that after adding oxalic acid to the HAC a precipitate is formed which, in addition to Zr and Mo as the main constituents, also contains considerable amounts of lanthanides, and thus will lead perhaps to a loss of trivalent actinides. This unusual behaviour of Ln(III) coprecipitation was further investigated. Thus, other Zr, Mo complexing agents were tested and with D-mannitol promising results were achieved. With D-mannitol we did not observe any precipitates and the extraction experiments could be performed using the DIAMEX solvent composed of 1.0 mol/L DMDBTDMA in TPH. Extraction results as the basis for the development of a continuous counter-current test will also be presented.
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Beom Kyu, Byung Gi Park, Hwa Jeong Han, Ji Hye Park, and Won Ki Kim. "An Effect of Bismuth Ion on the Reduction of Terbium Ion in Molten LiCl-KCl Eutectic Salt." In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-82468.

Full text
Abstract:
A salt waste generated from the pyroprocess contains residual actinides and needs to be purified for recycling of the salt and waste conditioning. A co-reduction process could be considered for removal of residual actinides from the salt waste, which contains lanthanides and residual actinides. In the study, specifically, an effect of Bi(III) ion on the electrochemical reaction of Tb(III) ion was investigated in the molten LiCl-KCl eutectic with BiCl3 and TbCl3 at 773 K using electrochemical techniques of cyclic voltammetry, square wave voltammetry and open circuit chronopotentiometry. Tb(III) has a single redox couple without Bi(III). However, the cyclic voltammograms obtained at tungsten electrode in LiCl-KCl-BiCl3-TbCl3 showed four redox couples. The square wave voltammogram in same condition also showed five reduction peaks. Cyclic voltammogram and square wave voltammogram was resolved to find the accurate peaks for redox reaction. Each peak indicates the formation of Tb-Bi intermetallic compound except Tb(III) reduction peak. From the phase diagram of Tb-Bi, it is inferred that each peak corresponds to TbBi2, TbBi, Tb4Bi3, and Tb5Bi3. The open circuit chronopotentiometry was conducted to estimate Gibbs free energy of formation of Tb-Bi intermetallic compound. The experimental results obtained from three kind of the electrochemical techniques showed that Tb-Bi intermetallic compounds were electrochemically formed under potential of Tb(III) reduction potential by co-reduction of Bi(III) and Tb(III). These results indicate that underpotential deposition by co-reduction could be used for Tb(III) removal from the salt waste with Bi(III).
APA, Harvard, Vancouver, ISO, and other styles
8

Gottwald, T., J. Lassen, Y. Liu, C. Mattolat, S. Raeder, K. Wendt, Tetuso Iguchi, and Kenichi Watanabe. "Laser Resonance Ionization Spectroscopy of the Lanthanides Tb, Dy and Ho as Homologues to Actinides and Super Heavy Elements." In 4TH INTERNATIONAL CONFERENCE ON LASER PROBING—LAP 2008. AIP, 2009. http://dx.doi.org/10.1063/1.3115590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Jin, Xuegang Liu, Yanchao Zhang, Qian’ge He, and Jianchen Wang. "Solids Formation Behavior of Simulated High-Level Liquid Waste During Long-Term Storage." In 18th International Conference on Nuclear Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/icone18-29590.

Full text
Abstract:
High-level liquid waste (HLLW) generated from reprocessing process contains actinides, lanthanides, fission products (FP) and a significant amount of nitrate ion. The partitioning and transmutation concept has been introduced for reducing the long-term hazards of HLLW. Several chemical separation processes mainly based on solvent extraction methods have been proposed to treat HLLW. However, solids consisting mainly Mo and Zr are known to form in HLLW during its long-term storage, Solid formations influence the composition of HLLW and the downstream solvent extraction process. To understand the precipitation behavior and stability of HLLW during its long-term storage, simulated HLLW (prepared as raffinate solution from LWR spent fuel reprocessing, 1AW solution) was prepared. Preliminary studies on solid formation behaviors with regard to the precipitation formation during refluxing and aging (representing a long-term storage) were carried out. Precipitation kinetics of major FPs such as Zr, Mo, Ru, rare earth elements, and etc. have been studied; The effect of phosphate ion concentration and temperature on solids formation were also experimentally examined. The formation conditions and the mechanism of solids were discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

Aoshima, Atsushi, Shigehiko Miyachi, Takashi Suganuma, and Shinichi Nemoto. "Renovation of Chemical Processing Facility for Development of Advanced Fast Reactor Fuel Cycle System in JNC." In 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22512.

Full text
Abstract:
The CPF had 4 laboratories (operation room A, laboratory A, laboratory C and analysis laboratory) in connection with reprocessing technology. The main laboratory, operation room A, has 5 hot cells. Since equipments in the main cell had been designed for small-scale verification of existing reprocessing steps, it was hardly able to respond flexibly to experimental studies on advanced technology. It was decided to remodel the cell according to the design that was newly laid out in order to ensure the function and space to conduct various basic tests. The other laboratories had no glove boxes for conducting basic experiments of important elements in the advanced reprocessing, such as actinides except U and Pu, lanthanides and so on. In order to meet various requirements of innovative technologies on advanced fuel cycle development, one laboratory is established more for study on dry reprocessing, and glove boxes, hoods and analytical equipments such as NMR, FT-IR, TI-MS are newly installed in the other laboratories in this renovation. After the renovation, hot tests in the CPF will be resumed from April 2002.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Lanthanides and actinides"

1

Brauer, R. D., T. E. Carleson, J. D. Harrington, F. Jean, H. Jiang, Y. Lin, and C. M. Wai. Selective chelation and extraction of lanthanides and actinides with supercritical fluids. Office of Scientific and Technical Information (OSTI), January 1994. http://dx.doi.org/10.2172/10146235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Clearfield, Abraham. Mixed Metal Phosphonate- Phosphate Resins for Separation of Lanthanides from Actinides. Office of Scientific and Technical Information (OSTI), October 2017. http://dx.doi.org/10.2172/1407693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Marino, Maria, M. and Walter C. Ermler. Reliable Electronic Structure Calculations for Heavy Element Chemistry: Molecules Containing Actinides, Lanthanides, and Transition Metals. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/875418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kenneth L. Nash, Sue B. Clark, and Gregg Lumetta. Selective Separation of Trivalent Actinides from Lanthanides by Aqueous Processing with Introduction of Soft Donor Atoms. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/967181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kenneth L. Nash. Selective Separation of Trivalent Actinides from Lanthanides by Aqueous Processing with Introduction of Soft Donor Atoms. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/964384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Benker, Dennis, Laetitia Helene Delmau, and Joshua Cory Dryman. Extraction of Trivalent Actinides and Lanthanides from Californium Campaign Rework Solution Using TODGA-based Solvent Extraction System. Office of Scientific and Technical Information (OSTI), July 2017. http://dx.doi.org/10.2172/1394273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wai, Chien M., and Bruce Mincher. Ionic Liquid and Supercritical Fluid Hyphenated Techniques for Dissolution and Separation of Lanthanides, Actinides, and Fission Products. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1058920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hartzell, C. J. {sup 31}P NMR study of the complexation of TBP with lanthanides and actinides in solution and in a clay matrix. Office of Scientific and Technical Information (OSTI), July 1994. http://dx.doi.org/10.2172/434923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Varlashkin, P. G. Spectroscopic and electrochemical studies of selected lanthanides and actinides in concentrated aqueous carbonate and carbonate-hydroxide solutions and in molten dimethyl sulfone. Office of Scientific and Technical Information (OSTI), March 1985. http://dx.doi.org/10.2172/5993632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rogers, J. D. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/431075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography