To see the other types of publications on this topic, follow the link: Lanthanum manganite.

Journal articles on the topic 'Lanthanum manganite'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Lanthanum manganite.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Nikitin, Stanislav, Sergey Popkov, Mikhail Petrov, Konstantin Terent’ev, Sergey Semenov, and Kirill Shaikhutdinov. "Features Of Magnetoresistance In The Bilayer Single Crystal Manganite LA1.4SR1.6MN2O7." Siberian Journal of Physics 10, no. 1 (March 1, 2015): 63–66. http://dx.doi.org/10.54362/1818-7919-2015-10-1-63-66.

Full text
Abstract:
We investigate magnetoresistance of single-crystal bilayer lanthanum manganite La1.4Sr1.6Mn2O7 at a transport current flowing along the crystal c axis and in external magnetic fields applied parallel to the crystal c axis or ab plane. It is demonstrated that the La1.4Sr1.6Mn2O7 manganite exhibits the positive magnetoresistance effect in the magnetic field applied in the ab plane of the sample at the temperatures T < 60 K. The mechanism of this effect is shown to be fundamentally different from the colossal magnetoresistance effect typical of lanthanum manganites. The positive magnetoresistance originates from spin-dependent tunneling of carriers between the manganese-oxygen bilayers and can be explained by features of the magnetic structure of the investigated compounds.
APA, Harvard, Vancouver, ISO, and other styles
2

Rizzuti, Anotnio, Massimo Viviani, Anna Corradi, Paolo Nanni, and Cristina Leonelli. "Microwave-Assisted Hydrothermal Synthesis as a Rapid Route Towards Manganite Preparation." Solid State Phenomena 128 (October 2007): 21–24. http://dx.doi.org/10.4028/www.scientific.net/ssp.128.21.

Full text
Abstract:
In this work attempts to prepare strontium-doped lanthanum manganites La1-xSrxMnO3 using microwave-assisted hydrothermal synthesis were undertaken from a mixture of lanthanum nitrate, strontium nitrate, manganese(II) nitrate, potassium permanganate and potassium hydroxide as a mineralizer. For x = 0.3, and x = 0.5, the perovskite obtained is not defined since both La0.7Sr0.3MnO3 and La0.5Sr0.5MnO3 phases are consistent with XRD spectra. While with x = 1.0, for the first time, hexagonal strontium manganite was prepared as blade-shaped crystallites with a narrow particle length distribution (range 3.75-7.75 μm) at 210°C using a treatment time of only 1 hour. Conventional hydrothermal synthetic routes require at least 24 hrs treatment time.
APA, Harvard, Vancouver, ISO, and other styles
3

Bolarín, A. M., F. Sánchez, A. Ponce, and E. E. Martínez. "Mechanosynthesis of lanthanum manganite." Materials Science and Engineering: A 454-455 (April 2007): 69–74. http://dx.doi.org/10.1016/j.msea.2006.12.062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sardjono, Priyo, and Wisnu Ari Adi. "Thermal Analysis and Magnetic Properties of Lanthanum Barium Manganite Perovskite." Advanced Materials Research 896 (February 2014): 381–84. http://dx.doi.org/10.4028/www.scientific.net/amr.896.381.

Full text
Abstract:
The lanthanum manganite is the family of magnetic materials which had the magnetic properties are varied depend on the composition. This study has been carried out synthesis and characterization of thermal and magnetic properties of the lanthanum barium manganite perovskite. The perovskite material is prepared by oxides, namely La2O3, BaCO3, and MnCO3. The mixture was milled for 10h and then sintered at temperature of 1000 °C for 10h. Thermal analysis and magnetic properties are measured by differential thermal analysis (TG-DTA) and vibrating sample magnetometer (VSM), respectively. Decomposition phase of MnCO3become MnO occurred at temperatures around 390 °C with releasing in CO2. Since lanthanum manganite has a stable ion configuration, magnetic properties of these systems are built from MnO phase transformation become α-Mn2O3is arrayed anti-ferromagnetic due to the presence of lanthanum in the system. And this anti-ferromagnetic behavior occurred due to magnetic interactions between Mn3+adjacent ions through super-exchange mechanism. While lanthanum barium manganite had a less stable ion configuration, therefore magnetic properties of these systems are built from phase transformation MnO become α-Mn3O4is arrayed ferromagnetic due to the presence of lanthanum and barium in this system. The presence of lanthanum and barium trigger in the emergence of mixed-valence Mn ions, so that occur to magnetic interaction between Mn3+and Mn4+through the double-exchange mechanism. We concluded that the characteristic of magnetic properties on the lanthanum barium manganite system perovskite is affected by thermal properties, fundamental properties of raw material and the result of reaction is formed.
APA, Harvard, Vancouver, ISO, and other styles
5

Wei, Ziyu, A. V. Pashchenko, N. A. Liedienov, I. V. Zatovsky, D. S. Butenko, Quanjun Li, I. V. Fesych, et al. "Multifunctionality of lanthanum–strontium manganite nanopowder." Physical Chemistry Chemical Physics 22, no. 21 (2020): 11817–28. http://dx.doi.org/10.1039/d0cp01426e.

Full text
Abstract:
The established results expand the understanding of the practical use of manganite perovskites as multifunctional nanomaterials with a unique combination of magnetic, magnetothermal, and electrocatalytic properties.
APA, Harvard, Vancouver, ISO, and other styles
6

Shah, Syed Shaheen, Khizar Hayat, Shahid Ali, Kamran Rasool, and Yaseen Iqbal. "Conduction mechanisms in lanthanum manganite nanofibers." Materials Science in Semiconductor Processing 90 (February 2019): 65–71. http://dx.doi.org/10.1016/j.mssp.2018.10.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

YOKOKAWA, H. "Thermodynamic representation of nonstoichiometric lanthanum manganite." Solid State Ionics 86-88 (July 1996): 1161–65. http://dx.doi.org/10.1016/0167-2738(96)00281-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ushakova, T. G., A. G. Usvyatsova, and A. A. Safonova. "Chemical analysis of strontium-lanthanum-manganite." Refractories 33, no. 9-10 (September 1992): 423–24. http://dx.doi.org/10.1007/bf01283389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, S. T., Y. Wu, and Y. Q. Jia. "Magnetic properties of lanthanum manganite and valence equilibria of manganese." Journal of Alloys and Compounds 197, no. 1 (June 1993): 91–96. http://dx.doi.org/10.1016/0925-8388(93)90624-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Turky, Ali Omar, Mohamed Mohamed Rashad, Ali Mostafa Hassan, Elsayed M. Elnaggar, and Mikhael Bechelany. "Tailoring optical, magnetic and electric behavior of lanthanum strontium manganite La1−xSrxMnO3 (LSM) nanopowders prepared via a co-precipitation method with different Sr2+ ion contents." RSC Advances 6, no. 22 (2016): 17980–86. http://dx.doi.org/10.1039/c5ra27461c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lu, Zhiqing, Hao Ni, Jianfeng Xi, Xiaoming Li, and Kun Zhao. "Picosecond Photovoltaic Response in Tilted Lanthanum Doped Manganite Films." International Journal of Photoenergy 2013 (2013): 1–4. http://dx.doi.org/10.1155/2013/436910.

Full text
Abstract:
Anisotropic picosecond photovoltaic responses were observed in lanthanum doped manganiteLaxCa1-xMnO3(x=0.67and 0.4) thin films, which were deposited on miscut LaSrAlO4substrates under ultraviolet pulsed laser irradiation without external bias. The 10%–90% rise time and the full width at half maximum of La0.67Ca0.33MnO3were 470 and 585 ps, respectively, and those of La0.4Ca0.6MnO3were 220 and 515 ps. The photovoltage sensitivities of La0.67Ca0.33MnO3and La0.4Ca0.6MnO3, which are sensitive to the concentrations of lanthanum of the samples, are 0.28 V/mJ and 3.47 V/mJ, respectively. The photosensitivity in the films deposited on MgO is higher than that in those deposited on LaSrAlO4substrates, for it has a big lattice mismatch. These results should open a route for the application of lanthanum doped manganite as an ultrafast photodetector material.
APA, Harvard, Vancouver, ISO, and other styles
12

Turky, Ali Omar, Mohamed Mohamed Rashad, Ali Mostafa Hassan, Elsayed M. Elnaggar, and Mikhael Bechelany. "Optical, electrical and magnetic properties of lanthanum strontium manganite La1−xSrxMnO3 synthesized through the citrate combustion method." Physical Chemistry Chemical Physics 19, no. 9 (2017): 6878–86. http://dx.doi.org/10.1039/c6cp07333f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

GHOSH, A., A. SAHU, A. GULNAR, and A. SURI. "Synthesis and characterization of lanthanum strontium manganite." Scripta Materialia 52, no. 12 (June 2005): 1305–9. http://dx.doi.org/10.1016/j.scriptamat.2005.02.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Shah, A. B., B. B. Nelson-Cheeseman, S. J. May, J. M. Zuo, A. Bhattacharya, and J. C. H. Spence. "Interfaces of lanthanum and strontium manganite superlattices." Acta Crystallographica Section A Foundations of Crystallography 67, a1 (August 22, 2011): C60. http://dx.doi.org/10.1107/s0108767311098576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Saiko, A. P., and S. A. Markevich. "Temperature hysteresis of magnetization in lanthanum manganite." Technical Physics Letters 33, no. 2 (February 2007): 108–10. http://dx.doi.org/10.1134/s1063785007020058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

D'Souza, Clive M., and Nigel M. Sammes. "Mechanical Properties of Strontium-Doped Lanthanum Manganite." Journal of the American Ceramic Society 83, no. 1 (January 2000): 47–52. http://dx.doi.org/10.1111/j.1151-2916.2000.tb01146.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Hayashi, Ken-ichi, Eiji Ohta, Hideo Wada, and Hiroko Higuma. "Bismuth-Substituted Lanthanum Manganite for Bolometric Applications." Japanese Journal of Applied Physics 39, Part 2, No. 12B (December 15, 2000): L1308—L1310. http://dx.doi.org/10.1143/jjap.39.l1308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Berezin, V. A., V. I. Nikolaĭchik, V. T. Volkov, Yu B. Gorbatov, V. I. Levashov, G. L. Klimenko, V. A. Tulin, V. N. Matveev, and I. I. Khodos. "Magnetoresistance of nanobridges of lanthanum-strontium manganite." Technical Physics Letters 25, no. 5 (May 1999): 398–401. http://dx.doi.org/10.1134/1.1262495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Svistunov, V. M., Yu V. Medvedev, V. Yu Tarenkov, A. I. D’yachenko, E. Hatta, M. Mukasa, R. Aoki, H. Szymczak, S. Lewandowski, and J. Leszczynski. "Spin-polarized electron tunneling in lanthanum manganite." Journal of Experimental and Theoretical Physics 91, no. 3 (September 2000): 547–52. http://dx.doi.org/10.1134/1.1320090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Morelli, Donald T., Andrew M. Mance, Joseph V. Mantese, and Adolph L. Micheli. "Magnetocaloric properties of doped lanthanum manganite films." Journal of Applied Physics 79, no. 1 (January 1996): 373–75. http://dx.doi.org/10.1063/1.360840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kassenov, B. K., Sh B. Kassenova, Zh I. Sagintaeva, E. E. Kuanyshbekov, and M. O. Turtubaeva. "Calorimetric Research into the Heat Capacity of Novel Nano-Sized Cobalt(Nickelite)-Cuprate-Manganites of LaBaMeIICuMnO6 (MeII = Co, Ni) and their Thermodynamic Properties." Eurasian Chemico-Technological Journal 22, no. 1 (March 26, 2020): 27. http://dx.doi.org/10.18321/ectj927.

Full text
Abstract:
The isobaric heat capacities of novel nano-sized cobalt-cuprate-manganite of lanthanum and barium LaBaCoCuMnO6 and nickel-cuprate-manganite of lanthanum and barium LaBaNiCuMnO6 were investigated by dynamic calorimetry over the temperature range of 298.15‒673 K. It is found that a λ-shaped effect is observed on the curve of the heat capacity dependence on temperature of LaBaCoCuMnO6 at 523 K, while LaBaNiCuMnO6 also has a similar effect at 473 K. Equations for the temperature dependence of the heat capacity of cobalt(nickelite)-cuprate-manganite of lanthanum and barium are derived with allowance for the temperatures of phase transitions. Based on the experimental data, the fundamental constants ‒ the standard heat capacities of the compounds under study were found. Irrespective of the experimental data, we also calculated the standard heat capacities of the mentioned compounds using the Debye theory using the characteristic temperatures of the elements, their melting points, the Koref and Nernst-Lindemann equations. The obtained calculated data on C0p (298.15) of the compounds were in satisfactory agreement with the experimental data on the standard heat capacity. The standard entropies of LaBaCoCuMnO6 and LaBaNiCuMnO6 were calculated by the ion increment method. We calculated the temperature dependences of the enthalpy Ho(T)- Ho(298.15), entropy ΔSo(T), and the reduced thermodynamic potential ΔФ**(Т).
APA, Harvard, Vancouver, ISO, and other styles
22

Lü, Jingbo, Yaohui Zhang, Zhe Lü, Xiqiang Huang, Zhihong Wang, Xingbao Zhu, and Bo Wei. "A preliminary study of the pseudo-capacitance features of strontium doped lanthanum manganite." RSC Advances 5, no. 8 (2015): 5858–62. http://dx.doi.org/10.1039/c4ra13583k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Taylor, Thomas H., Sixbert P. Muhoza, and Michael D. Gross. "Lowering the Impedance of Lanthanum Strontium Manganite-Based Electrodes with Lanthanum Oxychloride and Lanthanum Scavenging Chloride Salts." Journal of The Electrochemical Society 168, no. 11 (November 1, 2021): 114508. http://dx.doi.org/10.1149/1945-7111/ac359a.

Full text
Abstract:
The impact of infiltrating chloride salts on the electrochemical behavior of lanthanum strontium manganite-yttria stabilized zirconia (LSM-YSZ) cathodes was investigated under solid oxide fuel cell operation. Infiltrating a lanthanum chloride solution resulted in the formation of a lanthanum oxychloride (LaOCl) phase. A LaOCl phase also formed by infiltrating an ammonium chloride solution; however, lanthanum was scavenged from the LSM phase to form LaOCl. The third infiltrating solution, a combination of zirconium chloride and yttrium nitrate, formed LaOCl by scavenging lanthanum from LSM and produced YSZ nanoparticles. Electrochemical impedance spectroscopy results suggest that LaOCl improves oxygen adsorption kinetics compared to a baseline LSM-YSZ cathode, reducing the low frequency impedance by 30%. In addition, scavenging lanthanum from LSM improved oxygen ion diffusion polarization as indicated by the observed 40% reduction in high frequency impedance and improved serial ohmic resistance by 19%. Finally, YSZ nanoparticles further reduced the high frequency impedance and ohmic resistance by 45% and 23%, respectively. The findings reveal new strategies for lowering the impedance of LSM-YSZ cathodes.
APA, Harvard, Vancouver, ISO, and other styles
24

Kassenova, Sh B., Zh I. Sagintayeva, B. K. x. Kassenov, E. E. Kuanyshbekov, Zh S. Bekturganov, and A. K. Zeinidenov. "Electrophysical characteristics of nanodimensional cobalte-cuprate-manganite LaNa2CoCuMnO6 and nickelite-cuprate-manganite LaNa2NiCuMnO6." Bulletin of the Karaganda University. "Physics" Series 98, no. 2 (June 30, 2020): 43–49. http://dx.doi.org/10.31489/2020ph2/43-49.

Full text
Abstract:
The temperature dependences of the electric capacity, dielectric constant and electrical resistance of cobaltecuprate-manganite of lanthanum and sodium of LaNa2CoCuMnO6 and nickelite-cuprate-manganite of lanthanum and sodium of LaNa2NiCuMnO6 were investigated on the LCR-800 serial device (manufactured by Taiwan) at the operating frequencies of 1 kHz, 5 kHz, and 10 kHz in interval of 293–483 K through 10 K continuously in dry air. It was determined that LaNa2CoCuMnO6 in interval of 293–483 K shows the semiconductor conductivity. A band gap ( Е) is 0.54eV. The compound has the high values of the dielectric constant, which are equal 2.17106 (1 kHz), 2.31105 (5 kHz), 8.22104 (10 kHz) at 293 K and 8.49108 (5 kHz), 7.87107 (10 kHz) at 483 K. LaNa2NiCuMnO6 in interval of 293–483 K demonstrates the semiconductor conductivity ( Е = 0.48 eV), at 433–443 K — the metallic conductivity and at 453–483 K — the semiconductor conductivity ( Е = 2.33 eV).The values of the dielectric constant are 4.97103 (1 kHz), 9.2102 (5 kHz), 5.1101 (10 kHz) at 293 K and 1.02106 (1 kHz), 1.98105 (5 kHz) and 9.76104 (10 kHz) at 483 K. The compounds can be classified as the narrow-band gap semiconductors and they are of interest for the semiconductor and microcapacitor technologies.
APA, Harvard, Vancouver, ISO, and other styles
25

Demont, Antoine, and Stéphane Abanades. "High redox activity of Sr-substituted lanthanum manganite perovskites for two-step thermochemical dissociation of CO2." RSC Adv. 4, no. 97 (2014): 54885–91. http://dx.doi.org/10.1039/c4ra10578h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Demont, Antoine, and Stéphane Abanades. "Solar thermochemical conversion of CO2 into fuel via two-step redox cycling of non-stoichiometric Mn-containing perovskite oxides." Journal of Materials Chemistry A 3, no. 7 (2015): 3536–46. http://dx.doi.org/10.1039/c4ta06655c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Gonchar, Liudmila E., Anton A. Firsin, Anatoliy E. Nikiforov, and Sergey E. Popov. "Effects of Non-Magnetic Doping upon Orbital and Magnetic Structures of Lanthanum Manganite." Solid State Phenomena 190 (June 2012): 671–74. http://dx.doi.org/10.4028/www.scientific.net/ssp.190.671.

Full text
Abstract:
The theoretical model of the crystal structure of lanthanum manganite doped by non-Jahn-Teller ions is proposed. In order to describe the changes in the crystal structure and orbital state of manganese ions subsystem, we use modified shell model and virtual crystal model. The orbital ordering collapse is explained in terms of dynamical Jahn-Teller effect. The model of superexchange interaction helps to find the values of antiferromagnetic and ferromagnetic exchange parameters for dynamical and static orbital states of interacting ions. The magnetic structure of LaMn1-xGaxO3 is explained and magnetic resonance spectrum is predicted.
APA, Harvard, Vancouver, ISO, and other styles
28

Chiabrera, Francesco, Federico Baiutti, David Diercks, Andrea Cavallaro, Ainara Aguadero, Alex Morata, and Albert Tarancón. "Visualizing local fast ionic conduction pathways in nanocrystalline lanthanum manganite by isotope exchange-atom probe tomography." Journal of Materials Chemistry A 10, no. 5 (2022): 2228–34. http://dx.doi.org/10.1039/d1ta10538h.

Full text
Abstract:
The study of the oxygen incorporation and diffusion in lanthanum manganite thin films is presented by means of novel isotope-exchange atom probe tomography, allowing a direct quantification of the enhancement of grain boundaries' oxygen kinetics.
APA, Harvard, Vancouver, ISO, and other styles
29

Zubov, É. E., V. P. Dyakonov, and H. Szymczak. "Noncollinear cluster ferromagnetism in lanthanum manganite perovskites with an excess of manganese." Journal of Experimental and Theoretical Physics 95, no. 6 (December 2002): 1044–55. http://dx.doi.org/10.1134/1.1537296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wang, Hsiang-Jen, Mark R. De Guire, Zhengliang Xing, Gerry Agnew, Richard Goettler, Zhien Liu, and Arthur H. Heuer. "Manganese Oxide Formation in Lanthanum Strontium Manganite-Yttria-Stabilized Zirconia SOFC Cathodes." Metallurgical and Materials Transactions E 1, no. 3 (August 9, 2014): 263–71. http://dx.doi.org/10.1007/s40553-014-0026-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Meixner, D. "Sintering and mechanical characteristics of lanthanum strontium manganite." Solid State Ionics 146, no. 3-4 (February 2002): 273–84. http://dx.doi.org/10.1016/s0167-2738(01)01027-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Cherif, B., H. Rahmouni, M. Smari, E. Dhahri, N. Moutia, and K. Khirouni. "Transport properties of silver–calcium doped lanthanum manganite." Physica B: Condensed Matter 457 (January 2015): 240–44. http://dx.doi.org/10.1016/j.physb.2014.10.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

KOCH, S., P. VANGHENDRIKSEN, T. JACOBSEN, and L. BAY. "Electrical behaviour of strontium-doped lanthanum manganite interfaces." Solid State Ionics 176, no. 9-10 (March 15, 2005): 861–69. http://dx.doi.org/10.1016/j.ssi.2004.11.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Bazuev, G. V., A. V. Korolyov, M. A. Melkozyorova, and T. I. Chupakhina. "Magnetic phases in lanthanum–strontium manganite–cobaltite La1.25Sr0.75MnCoO6." Journal of Magnetism and Magnetic Materials 322, no. 5 (March 2010): 494–99. http://dx.doi.org/10.1016/j.jmmm.2009.10.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Nossov, A., A. Rinkevich, M. Rigmant, and V. Vassiliev. "Combined lanthanum manganite magnetoresistive-fluxgate magnetic field sensor." Sensors and Actuators A: Physical 94, no. 3 (November 2001): 157–60. http://dx.doi.org/10.1016/s0924-4247(01)00702-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Sahu, Ranjan K., and S. Sundar Manoharan. "A Zener pair effect in lanthanum rutheno manganite." Journal of Applied Physics 91, no. 10 (2002): 7517. http://dx.doi.org/10.1063/1.1447290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bilger, Serge, Emmanuel Syskakis, Aristides Naoumidis, and Hubertus Nickel. "Sol-Gel Synthesis of Strontium-Doped Lanthanum Manganite." Journal of the American Ceramic Society 75, no. 4 (April 1992): 964–70. http://dx.doi.org/10.1111/j.1151-2916.1992.tb04167.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Stevenson, Jeffry W., Paul F. Hallman, Timothy R. Armstrong, and Larry A. Chick. "Sintering Behavior of Doped Lanthanum and Yttrium Manganite." Journal of the American Ceramic Society 78, no. 3 (March 1995): 507–12. http://dx.doi.org/10.1111/j.1151-2916.1995.tb08207.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lin, P., S. H. Chun, M. B. Salamon, Y. Tomioka, and Y. Tokura. "Magnetic heat capacity in lanthanum manganite single crystals." Journal of Applied Physics 87, no. 9 (May 2000): 5825–27. http://dx.doi.org/10.1063/1.372535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Huang, Q., A. Santoro, J. W. Lynn, R. W. Erwin, J. A. Borchers, J. L. Peng, and R. L. Greene. "Structure and magnetic order in undoped lanthanum manganite." Physical Review B 55, no. 22 (June 1, 1997): 14987–99. http://dx.doi.org/10.1103/physrevb.55.14987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Shu,, Qifeng, Jiayun Zhang,, Jianhua Liu,, and Mei Zhang,. "Solid-state Reaction for Preparation of Lanthanum Manganite." High Temperature Materials and Processes 24, no. 3 (June 2005): 169–74. http://dx.doi.org/10.1515/htmp.2005.24.3.169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Núñez‐Regueiro, J. E., and A. M. Kadin. "Phenomenological model for giant magnetoresistance in lanthanum manganite." Applied Physics Letters 68, no. 19 (May 6, 1996): 2747–49. http://dx.doi.org/10.1063/1.115585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bolarín, A. M., F. Sánchez, S. Palomares, J. A. Aguilar, and G. Torres-Villaseñor. "Synthesis of calcium doped lanthanum manganite by mechanosynthesis." Journal of Alloys and Compounds 436, no. 1-2 (June 2007): 335–40. http://dx.doi.org/10.1016/j.jallcom.2006.07.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Franceschi, Giada, Michael Schmid, Ulrike Diebold, and Michele Riva. "Atomically resolved surface phases of La0.8Sr0.2MnO3(110) thin films." Journal of Materials Chemistry A 8, no. 43 (2020): 22947–61. http://dx.doi.org/10.1039/d0ta07032g.

Full text
Abstract:
The atomic-scale details of several surface phases of lanthanum–strontium manganite (La1−xSrxMnO3−δ, LSMO) with different near-surface cation stoichiometry are unveiled and systematically investigated for the first time.
APA, Harvard, Vancouver, ISO, and other styles
45

Nishiyama, Haruo, Masanobu Aizawa, Harumi Yokokawa, Teruhisa Horita, Natsuko Sakai, Masayuki Dokiya, and Tatsuya Kawada. "Stability of Lanthanum Calcium Chromite‐Lanthanum Strontium Manganite Interfaces in Solid Oxide Fuel Cells." Journal of The Electrochemical Society 143, no. 7 (July 1, 1996): 2332–41. http://dx.doi.org/10.1149/1.1837002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zhou, Xianfeng, Yong Zhao, Xinyu Cao, Yanfeng Xue, Dapeng Xu, Lei Jiang, and Wenhui Su. "Fabrication of polycrystalline lanthanum manganite (LaMnO3) nanofibers by electrospinning." Materials Letters 62, no. 3 (February 2008): 470–72. http://dx.doi.org/10.1016/j.matlet.2007.05.063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Aristova, I. M., V. D. Sedykh, V. Sh Shekhtman, G. E. Abrosimova, I. I. Zverkova, A. V. Dubovitskii, and V. I. Kulakov. "Nanostructuring of lanthanum manganite LaMnO3+δ under phase transition." Materials Letters 62, no. 6-7 (March 2008): 1036–39. http://dx.doi.org/10.1016/j.matlet.2007.07.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Amarnath, Chellalchamy Anbalagan, Fouad Ghamouss, Bruno Schmaltz, Cecile Autret-Lambert, Sylvain Roger, Francois Gervais, and Francois Tran-Van. "Polypyrrole/lanthanum strontium manganite oxide nanocomposites: Elaboration and characterization." Synthetic Metals 167 (March 2013): 18–24. http://dx.doi.org/10.1016/j.synthmet.2013.02.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Thomsen, E. C., G. W. Coffey, L. R. Pederson, and O. A. Marina. "Performance of lanthanum strontium manganite electrodes at high pressure." Journal of Power Sources 191, no. 2 (June 2009): 217–24. http://dx.doi.org/10.1016/j.jpowsour.2009.02.057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Mazaheri, M., and M. Akhavan. "Preparation and characterization of nano-polycrystalline lanthanum-based manganite." Physica B: Condensed Matter 405, no. 1 (January 2010): 72–76. http://dx.doi.org/10.1016/j.physb.2009.08.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography