Academic literature on the topic 'Laplace and Fourier transforms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Laplace and Fourier transforms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Laplace and Fourier transforms"
Corinthios, Michael J. "New Laplace, z and Fourier-related transforms." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463, no. 2081 (February 6, 2007): 1179–98. http://dx.doi.org/10.1098/rspa.2007.1814.
Full textSaberi-Nadjafi, Jafar. "A Computational Method for n-Dimensional Laplace Transforms Involved with Fourier Cosine Transform." ISRN Applied Mathematics 2013 (August 28, 2013): 1–4. http://dx.doi.org/10.1155/2013/748417.
Full textSalamat, Kaushef, and Nousheen Ilyas. "DUALITIES BETWEEN FOURIER SINE AND SOME USEFUL INTEGRAL TRANSFORMATIONS." Journal of Mathematical Sciences & Computational Mathematics 2, no. 4 (July 5, 2021): 542–63. http://dx.doi.org/10.15864/jmscm.2408.
Full textFitzsimmons, Patrick, and Tucker McElroy. "On Joint Fourier–Laplace Transforms." Communications in Statistics - Theory and Methods 39, no. 10 (May 12, 2010): 1883–85. http://dx.doi.org/10.1080/03610920902923502.
Full textKaneta, H. "Fourier-Laplace transforms decaying exponentially." Mathematical Proceedings of the Cambridge Philosophical Society 103, no. 2 (March 1988): 321–22. http://dx.doi.org/10.1017/s0305004100064896.
Full textBhandari, Piyush Kumar, and Sushil Kumar Bissu. "Inequalities for some classical integral transforms." Tamkang Journal of Mathematics 47, no. 3 (September 30, 2016): 351–56. http://dx.doi.org/10.5556/j.tkjm.47.2016.1981.
Full textLima, Fátima D. P., Jorge M. A. Garcia, and Alfredo D. Egídio Dos Reis. "Fourier/Laplace Transforms and Ruin Probabilities." ASTIN Bulletin 32, no. 1 (May 2002): 91–105. http://dx.doi.org/10.2143/ast.32.1.1017.
Full textXuan Thao, Nguyen, Vu Kim Tuan, Le Xuan Huy, and Nguyen Thanh Hong. "On the Fourier–Laplace convolution transforms." Integral Transforms and Special Functions 26, no. 4 (January 28, 2015): 303–13. http://dx.doi.org/10.1080/10652469.2014.1002781.
Full textLee, S. L. "Fourier–Laplace transforms and orthogonal polynomials." Journal of Approximation Theory 256 (August 2020): 105436. http://dx.doi.org/10.1016/j.jat.2020.105436.
Full textDimitrov, Dimitar K., and Yuan Xu. "Wronskians of Fourier and Laplace transforms." Transactions of the American Mathematical Society 372, no. 6 (June 3, 2019): 4107–25. http://dx.doi.org/10.1090/tran/7809.
Full textDissertations / Theses on the topic "Laplace and Fourier transforms"
Paditz, Ludwig. "Using ClassPad-technology in the education of students of electricalengineering (Fourier- and Laplace-Transformation)." Proceedings of the tenth International Conference Models in Developing Mathematics Education. - Dresden : Hochschule für Technik und Wirtschaft, 2009. - S. 469 - 474, 2012. https://slub.qucosa.de/id/qucosa%3A1799.
Full textPaditz, Ludwig. "Using ClassPad-technology in the education of students of electrical engineering (Fourier- and Laplace-Transformation)." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-80814.
Full textLi, Wei. "Thermal Barrier Effect, Non-Fourier Effect and Inertia Effect on a Cracked Plate under Thermal Shock Loading." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCD089/document.
Full textThermal shock problems occur in many engineering materials and elements, which are used in high temperature applications such as thermal barrier coatings (TBCs), solid propellant of rocket-engine, pulsed-laser processing of materials, and so on. The thermal shock resistance performances and the thermal shock damages of materials, especially the interface debonding and spallation of coatings, have received considerable attention in both analysis and design. Some conventional theories, such as the Fourier’s law of thermal conduction and the quasi-static assumption of the thermoelastic body, may no longer be appropriate because of the extreme loads provoked by the thermal shock. Therefore, these conventional theories need to be enriched or revised.The objective of this thesis is to develop the solutions of the transient temperature field and thermal stresses around a partially insulated crack in a thermoelastic strip under thermal shock loading. The crack lies parallel to the heated traction free surface. The thermal conductivity of the crack gap is taken into account. Hyperbolic heat conduction theory is used in solving the temperature field instead of the traditional Fourier thermal conduction theory. Equations of motion are applied to obtain the stress fields and the dynamic stress intensity factors of the crack. The Laplace and Fourier transforms are applied to solve the thermal-elastic governing equations such that the mixed boundary value problems are reduced to solving a singular integral equations system in Laplace-Fourier space. The numerical integration method is applied to get the temperature field and stress fields, respectively. The problems are then solved numerically by converting the singular integral equations to a linear algebraic equations system. Finally, numerical inversions of the Laplace transform are performed to obtain the temperature field and dynamic stress intensity factors in the time domain.Numerical results show that the thermal conductivity of the crack gap strongly affects the uniformity of the temperature field and consequently, the magnitude of the dynamic stress intensity factors of the crack. The stress intensity factors would have higher amplitude and oscillating feature comparing to those obtained under the conventional Fourier thermal conduction and quasi-static hypotheses. It is also observed that the interactions of the thermal conductivity of the crack gap, the non-Fourier effect and the inertia effects would make the dynamic thermal shock problem more complex. The magnitude of the thermal barrier, non-Fourier and inertia effects is estimated for some practical cases
Litman, Amélie. "Deux methodes d'inversion pour la caracterisation electromagnetique ou acoustique d'objets enfouis : transformee de fourier-laplace inverse et deformation d'ensembles de niveaux." Paris 11, 1997. http://www.theses.fr/1997PA112254.
Full textFeng, Le. "An in-depth examination of two-dimensional Laplace inversion and application to three-dimensional holography." University of Dayton / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1406814392.
Full textPaolantoni, Thibault. "Application de Riemann-Hilbert-Birkhoff." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS410/document.
Full textThe exponential dual map is a way to encode Stokes data of a connection on a trivial vector bundle on the Riemann sphere with two poles: one double pole at 0 and one simple pole at infinity.We give here a formula for the exponential dual map expressed as a non commutative serie. Others generalizations of this formula are given
Dušanka, Perišić. "On Integral Transforms and Convolution Equations on the Spaces of Tempered Ultradistributions." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 1992. https://www.cris.uns.ac.rs/record.jsf?recordId=73337&source=NDLTD&language=en.
Full textU ovoj tezi su proučavani prostori temperiranih ultradistribucija Beurlingovog i Roumieovog tipa, koji su prirodna uopštenja prostora Schwarzovih temperiranih distribucija u Denjoy-Carleman-Komatsuovoj teoriji ultradistribucija. Dokazano je ovi prostori imaju sva dobra svojstva, koja ima i Schwarzov prostor, izmedju ostalog, značajno svojstvo da Furijeova transformacija preslikava te prostore neprekidno na same sebe.U prvom poglavlju su uvedene neophodne oznake i pojmovi.U drugom poglavlju su uvedeni prostori ultrabrzo opadajucih ultradiferencijabilnih funkcija i njihovi duali, prostori Beurlingovih i Rumieuovih temperiranih ultradistribucija; proučavana su njihova topološka svojstva i veze sa poznatim prostorima distribucija i ultradistribucija, kao i strukturne osobine; date su i karakterizacije Ermitskih ekspanzija i graničnih reprezentacija elemenata tih prostora.Prostori multiplikatora Beurlingovih i Roumieuovih temperiranih ultradistribucija su okarakterisani u trećem poglavlju.Četvrto poglavlje je posvećeno proučavanju Fourierove, Wignerove, Bargmanove i Hilbertove transformacije na prostorima Beurlingovih i Rouimieovih temperiranih ultradistribucija i njihovim test prostorima.U petoj glavi je dokazana ekvivalentnost klasičnih definicija konvolucije na Beurlingovim prostorima ultradistribucija, kao i ekvivalentnost novouvedenih definicija ultratemperirane konvolucije ultradistribucija Beurlingovog tipa.U poslednjoj glavi je dat potreban i dovoljan uslov da konvolutor prostora temperiranih ultradistribucija bude hipoeliptičan u prostoru integrabilnih ultradistribucija i razmatrane su neke konvolucione jednačine u tom prostoru.Bibliografija ima 70 bibliografskih jedinica.
Xu, Yangyi. "Frequentist-Bayesian Hybrid Tests in Semi-parametric and Non-parametric Models with Low/High-Dimensional Covariate." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/71285.
Full textPh. D.
Roy, Kirk Andrew. "Laplace transforms, probabilities and queues." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ31000.pdf.
Full textAndreevska, Irena. "Mathematical modeling and analysis of options with jump-diffusion volatility." [Tampa, Fla.] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002343.
Full textBooks on the topic "Laplace and Fourier transforms"
Dyke, Philip P. G. An Introduction to Laplace Transforms and Fourier Series. London: Springer London, 2001.
Find full textDyke, Phil. An Introduction to Laplace Transforms and Fourier Series. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6395-4.
Full textDyke, Philip P. G. An Introduction to Laplace Transforms and Fourier Series. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0505-3.
Full textDistribution theory: Convolution, fourier transform, and laplace transform. Berlin: De Gruyter, 2013.
Find full text1950-, Arendt Wolfgang, ed. Vector-valued Laplace transforms and Cauchy problems. Basel: Birkhäuser Verlag, 2001.
Find full textSeslavin, Andrey. Theory of automatic control. Linear, continuous systems. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1014654.
Full textGray, Robert M., and Joseph W. Goodman. Fourier Transforms. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2359-8.
Full textClausen, Michael. Fast Fourier transforms. Mannheim: B.I. Wissenschaftsverlag, 1993.
Find full textBook chapters on the topic "Laplace and Fourier transforms"
De Concini, Corrado, and Claudio Procesi. "Fourier and Laplace Transforms." In Topics in Hyperplane Arrangements, Polytopes and Box-Splines, 69–75. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-78963-7_3.
Full textPipkin, A. C. "Fourier and Laplace Transforms." In Lectures on Viscoelasticity Theory, 22–32. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4612-1078-8_3.
Full textCicogna, Giampaolo. "Fourier and Laplace Transforms. Distributions." In Undergraduate Lecture Notes in Physics, 73–125. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76165-7_3.
Full textSirovich, Lawrence. "The Fourier and Laplace Transforms." In Introduction to Applied Mathematics, 261–93. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-4580-3_8.
Full textCicogna, Giampaolo. "Fourier and Laplace Transforms. Distributions." In Undergraduate Lecture Notes in Physics, 73–127. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59472-5_3.
Full textWunsch, A. David. "Transforms: Laplace, Fourier, Z, and Hilbert." In A MATLAB® Companion to Complex Variables, 235–307. Boca Raton : Taylor & Francis, 2016. | Series: Textbooks in mathematics ; 41 | “A CRC title.”: CRC Press, 2018. http://dx.doi.org/10.1201/9781315380339-6.
Full textKarpfinger, Christian. "Solving PDEs with Fourier and Laplace Transforms." In Calculus and Linear Algebra in Recipes, 1015–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-65458-3_91.
Full textAndrews, George E., and Bruce C. Berndt. "A Partial Manuscript on Fourier and Laplace Transforms." In Ramanujan's Lost Notebook, 285–305. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-4081-9_13.
Full textSaitoh, Saburou. "The Hilbert Spaces of Szegö Type and Fourier-Laplace Transforms on ℝ n." In Generalized Functions and Their Applications, 197–212. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1591-7_19.
Full textJones, W. D., H. J. Doucet, and J. M. Buzzi. "The Cookbook Everything You Always Wanted to Know About Fourier, Laplace, and Hilbert Transforms, but Were Afraid to Ask ..." In An Introduction to the Linear Theories and Methods of Electrostatic Waves in Plasmas, 1–47. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4757-0211-8_1.
Full textConference papers on the topic "Laplace and Fourier transforms"
Maljar, David, and Viera Stopjakova. "Understanding the Fourier and Laplace transforms through visual interpretation." In 2021 19th International Conference on Emerging eLearning Technologies and Applications (ICETA). IEEE, 2021. http://dx.doi.org/10.1109/iceta54173.2021.9726659.
Full textKhalaf, Rihab F., and Fethi Bin Muhammad Belgacem. "Extraction of the Laplace, Fourier, and Mellin transforms from the Sumudu transform." In 10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES: ICNPAA 2014. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4907309.
Full textEl-Shahed, Moustafa, and Ahmed Salem. "On the Generalized Navier-Stokes Equations." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/vib-48399.
Full textSmith, G. A. "The prosaic Laplace and Fourier transform." In The 6th workshop on beam instrumentation. AIP, 1995. http://dx.doi.org/10.1063/1.48047.
Full textOrtigueira, Manuel D., and Juan J. Trujillo. "Generalized GL Fractional Derivative and Its Laplace and Fourier Transform." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87238.
Full textMitrofanov, Georgy, and Viatcheslav Priimenko. "Role of discrete Laplace and Fourier‐Bessel transforms in direct problems in frequency domain." In SEG Technical Program Expanded Abstracts 2009. Society of Exploration Geophysicists, 2009. http://dx.doi.org/10.1190/1.3255621.
Full textSharma, Kal Renganathan. "Mesoscopic Heat Conduction and Onset of Periodicity." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47391.
Full textLu, Wen-Qiang, and Qing-Mei Fan. "Non-Fourier Heat Conduction Phenomena Applied Different Temperature and Heat Flux Pulses on Boundary." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52287.
Full textJialei Hu, Changhong Liu, and Xuguang Li. "Fourier and laplace transform used in pretreatment for neural network battery modeling." In 2012 7th International Power Electronics and Motion Control Conference (IPEMC 2012). IEEE, 2012. http://dx.doi.org/10.1109/ipemc.2012.6258892.
Full textMarkel, V. A., and J. C. Schotland. "Inversion formulas for optical diffusion tomography based on the Fourier-Laplace transform." In Conference on Lasers and Electro-Optics (CLEO 2000). Technical Digest. Postconference Edition. TOPS Vol.39. IEEE, 2000. http://dx.doi.org/10.1109/cleo.2000.907391.
Full textReports on the topic "Laplace and Fourier transforms"
Teugels, Jozef L. Real Inversion Formulas for Laplace and Stieltjes Transforms. Fort Belvoir, VA: Defense Technical Information Center, July 1985. http://dx.doi.org/10.21236/ada161270.
Full textYegulalp, A. F. Asymptotic Error for Windowed Discrete Fourier Transforms. Fort Belvoir, VA: Defense Technical Information Center, August 2006. http://dx.doi.org/10.21236/ada452964.
Full textSorets, Eugene. Fast Fourier Transforms of Piecewise Constant Functions. Fort Belvoir, VA: Defense Technical Information Center, September 1993. http://dx.doi.org/10.21236/ada272648.
Full textScheinker, Alexander. Introduction to Control Theory. Part 2. Laplace Transforms and Linear Systems. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1214624.
Full textZaevski, Tsvetelin S. Laplace Transforms for the First Hitting Time of a Brownian Motion. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, July 2020. http://dx.doi.org/10.7546/crabs.2020.07.05.
Full textZaevski, Tsvetelin N. Laplace Transforms of the Brownian Motion’s First Exit from a Strip. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, May 2021. http://dx.doi.org/10.7546/crabs.2021.05.04.
Full textTang, Xiaoou, and W. K. Stewart. Texture Classification Using Wavelet Packet and Fourier Transforms. Fort Belvoir, VA: Defense Technical Information Center, January 1995. http://dx.doi.org/10.21236/ada324161.
Full textUeng, Neng-Tsann, and Louis L. Scharf. Frames and Orthonormal Bases for Variable Windowed Fourier Transforms. Fort Belvoir, VA: Defense Technical Information Center, July 1996. http://dx.doi.org/10.21236/ada311766.
Full textBennett, Paul. Parallelization of Two- and Three-Dimensional Fast Fourier Transforms. Fort Belvoir, VA: Defense Technical Information Center, February 2001. http://dx.doi.org/10.21236/ada387428.
Full textWarshaw, S. I. Fourier Transforms of Pulses Containing Exponential Leading and Trailing Profiles. Office of Scientific and Technical Information (OSTI), July 2001. http://dx.doi.org/10.2172/15002784.
Full text