Academic literature on the topic 'Laplacian matrix'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Laplacian matrix.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Laplacian matrix"
Zakiyyah, A. Y. "Some result on integrality of several matrix representation of complete r-uniform hypergraph." Journal of Physics: Conference Series 2157, no. 1 (January 1, 2022): 012006. http://dx.doi.org/10.1088/1742-6596/2157/1/012006.
Full textLorenzen, Kate. "Cospectral constructions for several graph matrices using cousin vertices." Special Matrices 10, no. 1 (June 28, 2021): 9–22. http://dx.doi.org/10.1515/spma-2020-0143.
Full textYu, Guihai, and Hui Qu. "More on Spectral Analysis of Signed Networks." Complexity 2018 (October 16, 2018): 1–6. http://dx.doi.org/10.1155/2018/3467158.
Full textD., Cokilavany. "On Some Bounds of Extended Signless Laplacian Matrix Indices." Journal of Advanced Research in Dynamical and Control Systems 12, SP4 (March 31, 2020): 1816–21. http://dx.doi.org/10.5373/jardcs/v12sp4/20201667.
Full textWu, Tingzeng, and Tian Zhou. "The Characterizing Properties of (Signless) Laplacian Permanental Polynomials of Almost Complete Graphs." Journal of Mathematics 2021 (September 30, 2021): 1–7. http://dx.doi.org/10.1155/2021/9161508.
Full textEl Seidy, Essam, Salah Eldin Hussein, and Atef Mohamed. "Properties of the characteristic polynomials and spectrum of Pn and Cn." International Journal of Applied Mathematical Research 5, no. 2 (May 22, 2016): 132. http://dx.doi.org/10.14419/ijamr.v5i2.6106.
Full textTrinajstic, Nenad, Darko Babic, Sonja Nikolic, Dejan Plavsic, Dragan Amic, and Zlatko Mihalic. "The Laplacian matrix in chemistry." Journal of Chemical Information and Modeling 34, no. 2 (March 1, 1994): 368–76. http://dx.doi.org/10.1021/ci00018a023.
Full textTuna, S. Emre. "Synchronization under matrix-weighted Laplacian." Automatica 73 (November 2016): 76–81. http://dx.doi.org/10.1016/j.automatica.2016.06.012.
Full textAmeenal Bibi, K., B. Vijayalakshmi, and R. Jothilakshmi. "Bounds of Laplacian Energy of a Hypercube Graph." International Journal of Engineering & Technology 7, no. 4.10 (October 2, 2018): 582. http://dx.doi.org/10.14419/ijet.v7i4.10.21287.
Full textReinhart, Carolyn. "The normalized distance Laplacian." Special Matrices 9, no. 1 (January 1, 2021): 1–18. http://dx.doi.org/10.1515/spma-2020-0114.
Full textDissertations / Theses on the topic "Laplacian matrix"
Biyikoglu, Türker, and Josef Leydold. "Semiregular Trees with Minimal Laplacian Spectral Radius." Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 2009. http://epub.wu.ac.at/986/1/document.pdf.
Full textSeries: Research Report Series / Department of Statistics and Mathematics
Helmberg, Christoph, Israel Rocha, and Uwe Schwerdtfeger. "A Combinatorial Algorithm for Minimizing the Maximum Laplacian Eigenvalue of Weighted Bipartite Graphs." Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-175057.
Full textMeyer, Marie. "Polytopes Associated to Graph Laplacians." UKnowledge, 2018. https://uknowledge.uky.edu/math_etds/54.
Full textBraga, Rodrigo Orsini. "Localização de autovalores de árvores e de grafos unicíclicos." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/132255.
Full textIn this work, we present an algorithm that computes the number of eigenvalues of any symmetric matrix that represents a tree, in a given real interval. Several applications are obtained about the distribution of the eigenvalues of the perturbed Laplacian matrix, which is a matrix representation of graphs that includes, as special cases, the adjacency matrix, the combinatorial Laplacian matrix, the signless Laplacian matrix and the normalized Laplacian matrix, widely studied in Spectral Graph Theory. In addition, we also develop an algorithm that locates the eigenvalues of the adjacency matrix of a unicyclic graph. This procedure allows us to obtain spectral properties of unicyclic caterpillars.
Biyikoglu, Türker, and Josef Leydold. "Algebraic Connectivity and Degree Sequences of Trees." Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 2008. http://epub.wu.ac.at/782/1/document.pdf.
Full textSeries: Research Report Series / Department of Statistics and Mathematics
Brooks, Josh Daniel. "Nested (2,r)-regular graphs and their network properties." Digital Commons @ East Tennessee State University, 2012. https://dc.etsu.edu/etd/1471.
Full textSimpson, Daniel Peter. "Krylov subspace methods for approximating functions of symmetric positive definite matrices with applications to applied statistics and anomalous diffusion." Queensland University of Technology, 2008. http://eprints.qut.edu.au/29751/.
Full textAmaro, Bruno Dias 1984. "A soma dos maiores autovalores da matriz laplaciana sem sinal em famílias de grafos." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306808.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-26T08:31:47Z (GMT). No. of bitstreams: 1 Amaro_BrunoDias_D.pdf: 1369520 bytes, checksum: a36663d5fd23193d66bb22c83cb932aa (MD5) Previous issue date: 2014
Resumo: A Teoria Espectral de Grafos é um ramo da Matemática Discreta que se preocupa com a relação entre as propriedades algébricas do espectro de certas matrizes associadas a grafos, como a matriz de adjacência, laplaciana ou laplaciana sem sinal e a topologia dos mesmos. Os autovalores e autovetores das matrizes associadas a um grafo são os invariantes que formam o autoespaço de grafos. Em Teoria Espectral de Grafos a conjectura proposta por Brouwer e Haemers, que associa a soma dos k maiores autovalores da matriz Laplaciana de um grafo G com seu número de arestas mais um fator combinatório (que depende do valor k adotado) é uma das questões interessantes e que está em aberto na literatura. Essa mostra diversos trabalhos que tentam provar tal conjectura. Em 2013, Ashraf et al. estenderam essa conjectura para a matriz laplaciana sem sinal e provaram que ela é válida para a soma dos 2 maiores autovalores e que também é válida para todo k, caso o grafo seja regular. Nosso trabalho aborda a versão dessa conjectura para a matriz laplaciana sem sinal. Conseguimos obter uma família de grafos que satisfaz a conjectura para a soma dos 3 maiores autovalores da matriz laplaciana sem sinal e a família de grafos split completo mais uma aresta satisfaz a conjectura para todos os autovalores. Ainda, baseado na desigualdade de Schur, conseguimos mostrar que a soma dos k menores autovalores das matrizes laplaciana e laplaciana sem sinal são limitadas superiormente pela soma dos k menores graus de G
Abstract: The Spectral Graph Theory is a branch of Discrete Mathematics that is concerned with relations between the algebraic properties of spectrum of some matrices associated to graphs, as the Adjacency, Laplacian and signless Laplacian matrices and their respective topologies. The eigenvalues and eigenvectors of matrices associated to graphs are the invariants which constitute the eigenspace of graphs. On Spectral Graph Theory the conjecture proposed by Brouwer and Haemers, associating the sum of k largest eigenvalues of Laplacian matrix of a graph G with its edges numbers plus a combinatorial factor (which depends on the choosed k) is an open interesting question in the Literature. There are several works that attempt to prove this conjecture. In 2013, Ashraf et al. stretch the conjecture out to signless Laplacian matrix and proved that it is true for the sum of the 2 largest eigenvalues of signless Laplacian matrix and it is also true for all k if G is a regular graph. Our work approaches on the version of the conjecture concerning to signless Laplacian matrix. We could obtain a family of graphs which satisfies the conjecture for the sum of the 3 largest eigenvalues of signless Laplacian matrix and we prove that the family of complete split graphs plus one edge satisfies the Conjecture for all eigenvalues. Moreover, based on Schur's inequality, we could show that the sum of the k smallest eigenvalues of Laplacian and signless Laplacian matrices are bounded by the sum of the k smallest degrees of G
Doutorado
Matematica Aplicada
Doutor em Matemática Aplicada
Biyikoglu, Türker. "A Discrete Nodal Domain Theorem for Trees." Department of Statistics and Mathematics, Abt. f. Angewandte Statistik u. Datenverarbeitung, WU Vienna University of Economics and Business, 2002. http://epub.wu.ac.at/1270/1/document.pdf.
Full textSeries: Preprint Series / Department of Applied Statistics and Data Processing
Masum, Mohammad. "Vertex Weighted Spectral Clustering." Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/etd/3266.
Full textBooks on the topic "Laplacian matrix"
Applications of combinatorial matrix theory to Laplacian matrices of graphs. Boca Raton: CRC Press, 2012.
Find full textMolitierno, Jason J. Applications of combinatorial matrix theory to Laplacian matrices of graphs. Boca Raton: CRC Press, 2012.
Find full textFerrari, Patrik L., and Herbert Spohn. Random matrices and Laplacian growth. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.39.
Full textNewman, Mark. Mathematics of networks. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805090.003.0006.
Full textVernizzi, Graziano, and Henri Orland. Complex networks. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.43.
Full textBook chapters on the topic "Laplacian matrix"
Bapat, Ravindra B. "Laplacian Matrix." In Universitext, 49–59. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6569-9_4.
Full textGustafsson, Björn, Razvan Teodorescu, and Alexander Vasil’ev. "Laplacian Growth and Random Matrix Theory." In Classical and Stochastic Laplacian Growth, 187–210. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08287-5_6.
Full textBabarinsa, Olayiwola, and Hailiza Kamarulhaili. "On Determinant of Laplacian Matrix and Signless Laplacian Matrix of a Simple Graph." In Theoretical Computer Science and Discrete Mathematics, 212–17. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64419-6_28.
Full textWiskott, Laurenz, and Fabian Schönfeld. "Laplacian Matrix for Dimensionality Reduction and Clustering." In Lecture Notes in Business Information Processing, 93–119. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61627-4_5.
Full textBapat, R. B., and Sivaramakrishnan Sivasubramanian. "The Third Immanant of q-Laplacian Matrices of Trees and Laplacians of Regular Graphs." In Combinatorial Matrix Theory and Generalized Inverses of Matrices, 33–40. India: Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-1053-5_3.
Full textChen, Pan, Yangcheng He, Hongtao Lu, and Li Wu. "Constrained Non-negative Matrix Factorization with Graph Laplacian." In Neural Information Processing, 635–44. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26555-1_72.
Full textChen, Xingguang, and Zhentao Zhu. "General Quasi-Laplacian Matrix of Weighted Mixed Pseudograph." In Advances in Intelligent Systems and Computing, 316–23. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02116-0_37.
Full textKalita, Debajit. "Determinant of the Laplacian Matrix of a Weighted Directed Graph." In Combinatorial Matrix Theory and Generalized Inverses of Matrices, 57–62. India: Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-1053-5_5.
Full textKirkland, Stephen. "The Group Inverse of the Laplacian Matrix of a Graph." In Advanced Courses in Mathematics - CRM Barcelona, 131–71. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70953-6_4.
Full textFiedler, Miroslav. "A Geometric Approach to the Laplacian Matrix of a Graph." In Combinatorial and Graph-Theoretical Problems in Linear Algebra, 73–98. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-8354-3_3.
Full textConference papers on the topic "Laplacian matrix"
Wang, Xiangrong, and Piet Van Mieghem. "Orthogonal Eigenvector Matrix of the Laplacian." In 2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS). IEEE, 2015. http://dx.doi.org/10.1109/sitis.2015.35.
Full textLe Bars, Batiste, Pierre Humbert, Laurent Oudre, and Argyris Kalogeratos. "Learning Laplacian Matrix from Bandlimited Graph Signals." In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019. http://dx.doi.org/10.1109/icassp.2019.8682769.
Full textLi, Shuang, and Weiguo Xia. "Sampled-Data Synchronization under Matrix-Weighted Laplacian." In 2019 Chinese Control Conference (CCC). IEEE, 2019. http://dx.doi.org/10.23919/chicc.2019.8865774.
Full textDong, Xiaowen, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst. "Laplacian matrix learning for smooth graph signal representation." In ICASSP 2015 - 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015. http://dx.doi.org/10.1109/icassp.2015.7178669.
Full textLiao, Tianxing, Wen-Qin Wang, Bang Huang, and Jian Xu. "Learning Laplacian Matrix for Smooth Signals on Graph*." In 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP). IEEE, 2019. http://dx.doi.org/10.1109/icsidp47821.2019.9173468.
Full textHou, Junhui, Lap-Pui Chau, Ying He, and Huanqiang Zeng. "Robust laplacian matrix learning for smooth graph signals." In 2016 IEEE International Conference on Image Processing (ICIP). IEEE, 2016. http://dx.doi.org/10.1109/icip.2016.7532684.
Full textPavez, Eduardo, and Antonio Ortega. "Generalized Laplacian precision matrix estimation for graph signal processing." In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016. http://dx.doi.org/10.1109/icassp.2016.7472899.
Full textLam, Edmund Y. "Non-negative matrix factorization for images with Laplacian noise." In APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). IEEE, 2008. http://dx.doi.org/10.1109/apccas.2008.4746143.
Full textHermann, Jonathan, and Ulrich Konigorski. "Eigenvalue Assignment for the Laplacian Matrix of Directed Graphs." In 2019 American Control Conference (ACC). IEEE, 2019. http://dx.doi.org/10.23919/acc.2019.8814446.
Full textExman, Iaakov, and Rawi Sakhnini. "Linear Software Models: Modularity Analysis by the Laplacian Matrix." In 11th International Conference on Software Paradigm Trends. SCITEPRESS - Science and Technology Publications, 2016. http://dx.doi.org/10.5220/0005985601000108.
Full text