Dissertations / Theses on the topic 'Laplacian matrix'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 18 dissertations / theses for your research on the topic 'Laplacian matrix.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Biyikoglu, Türker, and Josef Leydold. "Semiregular Trees with Minimal Laplacian Spectral Radius." Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 2009. http://epub.wu.ac.at/986/1/document.pdf.
Full textSeries: Research Report Series / Department of Statistics and Mathematics
Helmberg, Christoph, Israel Rocha, and Uwe Schwerdtfeger. "A Combinatorial Algorithm for Minimizing the Maximum Laplacian Eigenvalue of Weighted Bipartite Graphs." Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-175057.
Full textMeyer, Marie. "Polytopes Associated to Graph Laplacians." UKnowledge, 2018. https://uknowledge.uky.edu/math_etds/54.
Full textBraga, Rodrigo Orsini. "Localização de autovalores de árvores e de grafos unicíclicos." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/132255.
Full textIn this work, we present an algorithm that computes the number of eigenvalues of any symmetric matrix that represents a tree, in a given real interval. Several applications are obtained about the distribution of the eigenvalues of the perturbed Laplacian matrix, which is a matrix representation of graphs that includes, as special cases, the adjacency matrix, the combinatorial Laplacian matrix, the signless Laplacian matrix and the normalized Laplacian matrix, widely studied in Spectral Graph Theory. In addition, we also develop an algorithm that locates the eigenvalues of the adjacency matrix of a unicyclic graph. This procedure allows us to obtain spectral properties of unicyclic caterpillars.
Biyikoglu, Türker, and Josef Leydold. "Algebraic Connectivity and Degree Sequences of Trees." Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 2008. http://epub.wu.ac.at/782/1/document.pdf.
Full textSeries: Research Report Series / Department of Statistics and Mathematics
Brooks, Josh Daniel. "Nested (2,r)-regular graphs and their network properties." Digital Commons @ East Tennessee State University, 2012. https://dc.etsu.edu/etd/1471.
Full textSimpson, Daniel Peter. "Krylov subspace methods for approximating functions of symmetric positive definite matrices with applications to applied statistics and anomalous diffusion." Queensland University of Technology, 2008. http://eprints.qut.edu.au/29751/.
Full textAmaro, Bruno Dias 1984. "A soma dos maiores autovalores da matriz laplaciana sem sinal em famílias de grafos." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306808.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-26T08:31:47Z (GMT). No. of bitstreams: 1 Amaro_BrunoDias_D.pdf: 1369520 bytes, checksum: a36663d5fd23193d66bb22c83cb932aa (MD5) Previous issue date: 2014
Resumo: A Teoria Espectral de Grafos é um ramo da Matemática Discreta que se preocupa com a relação entre as propriedades algébricas do espectro de certas matrizes associadas a grafos, como a matriz de adjacência, laplaciana ou laplaciana sem sinal e a topologia dos mesmos. Os autovalores e autovetores das matrizes associadas a um grafo são os invariantes que formam o autoespaço de grafos. Em Teoria Espectral de Grafos a conjectura proposta por Brouwer e Haemers, que associa a soma dos k maiores autovalores da matriz Laplaciana de um grafo G com seu número de arestas mais um fator combinatório (que depende do valor k adotado) é uma das questões interessantes e que está em aberto na literatura. Essa mostra diversos trabalhos que tentam provar tal conjectura. Em 2013, Ashraf et al. estenderam essa conjectura para a matriz laplaciana sem sinal e provaram que ela é válida para a soma dos 2 maiores autovalores e que também é válida para todo k, caso o grafo seja regular. Nosso trabalho aborda a versão dessa conjectura para a matriz laplaciana sem sinal. Conseguimos obter uma família de grafos que satisfaz a conjectura para a soma dos 3 maiores autovalores da matriz laplaciana sem sinal e a família de grafos split completo mais uma aresta satisfaz a conjectura para todos os autovalores. Ainda, baseado na desigualdade de Schur, conseguimos mostrar que a soma dos k menores autovalores das matrizes laplaciana e laplaciana sem sinal são limitadas superiormente pela soma dos k menores graus de G
Abstract: The Spectral Graph Theory is a branch of Discrete Mathematics that is concerned with relations between the algebraic properties of spectrum of some matrices associated to graphs, as the Adjacency, Laplacian and signless Laplacian matrices and their respective topologies. The eigenvalues and eigenvectors of matrices associated to graphs are the invariants which constitute the eigenspace of graphs. On Spectral Graph Theory the conjecture proposed by Brouwer and Haemers, associating the sum of k largest eigenvalues of Laplacian matrix of a graph G with its edges numbers plus a combinatorial factor (which depends on the choosed k) is an open interesting question in the Literature. There are several works that attempt to prove this conjecture. In 2013, Ashraf et al. stretch the conjecture out to signless Laplacian matrix and proved that it is true for the sum of the 2 largest eigenvalues of signless Laplacian matrix and it is also true for all k if G is a regular graph. Our work approaches on the version of the conjecture concerning to signless Laplacian matrix. We could obtain a family of graphs which satisfies the conjecture for the sum of the 3 largest eigenvalues of signless Laplacian matrix and we prove that the family of complete split graphs plus one edge satisfies the Conjecture for all eigenvalues. Moreover, based on Schur's inequality, we could show that the sum of the k smallest eigenvalues of Laplacian and signless Laplacian matrices are bounded by the sum of the k smallest degrees of G
Doutorado
Matematica Aplicada
Doutor em Matemática Aplicada
Biyikoglu, Türker. "A Discrete Nodal Domain Theorem for Trees." Department of Statistics and Mathematics, Abt. f. Angewandte Statistik u. Datenverarbeitung, WU Vienna University of Economics and Business, 2002. http://epub.wu.ac.at/1270/1/document.pdf.
Full textSeries: Preprint Series / Department of Applied Statistics and Data Processing
Masum, Mohammad. "Vertex Weighted Spectral Clustering." Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/etd/3266.
Full textCarozza, Marina. "Matrici Laplaciane sui grafi, proprietà di interlacing ed applicazione allo spectral clustering." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18789/.
Full textMatula, Radek. "Grafická reprezentace grafů." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2009. http://www.nusl.cz/ntk/nusl-236753.
Full textPinheiro, Sofia Alexandra Marques Jorge. "Majorantes para a ordem de subgrafos induzidos k-regulares." Doctoral thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/12863.
Full textMuitos dos problemas de otimização em grafos reduzem-se à determinação de um subconjunto de vértices de cardinalidade máxima que induza um subgrafo k-regular. Uma vez que a determinação da ordem de um subgrafo induzido k-regular de maior ordem é, em geral, um problema NP-difícil, são deduzidos novos majorantes, a determinar em tempo polinomial, que em muitos casos constituam boas aproximações das respetivas soluções ótimas. Introduzem-se majorantes espetrais usando uma abordagem baseada em técnicas de programação convexa e estabelecem-se condições necessárias e suficientes para que sejam atingidos. Adicionalmente, introduzem-se majorantes baseados no espetro das matrizes de adjacência, laplaciana e laplaciana sem sinal. É ainda apresentado um algoritmo não polinomial para a determinação de umsubconjunto de vértices de umgrafo que induz umsubgrafo k-regular de ordem máxima para uma classe particular de grafos. Finalmente, faz-se um estudo computacional comparativo com vários majorantes e apresentam-se algumas conclusões.
Many optimization problems on graphs are reduced to the determination of a subset of vertices of maximum cardinality inducing a k-regular subgraph. Since the determination of the order of a k-regular induced subgraph of highest order is in general a NP-hard problem, new upper bounds, determined in polynomial time which in many cases are good approximations of the respective optimal solutions are deduced. Using convex programming techniques, spectral upper boundswere introduced jointly with necessary and sufficient conditions for those upper bounds be achieved. Additionally, upper bounds based on adjacency, Laplacian and signless Laplacian spectrum are introduced. Furthermore, a nonpolynomial time algorithm for determining a subset of vertices of a graph which induces a maximum k-regular induced subgraph for a particular class is presented. Finally, a comparative computational study is provided jointly with a few conclusions.
Pettinari, Tommaso. "Analisi della dinamica su network." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24679/.
Full textMarotta, Serena. "Alcuni metodi matriciali per lo Spectral Clustering." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14122/.
Full textSantandrea, Giacomo. "Equazioni di Maxwell e forme differenziali." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Find full text"Data Poisoning Attacks on Linked Data with Graph Regularization." Master's thesis, 2019. http://hdl.handle.net/2286/R.I.53572.
Full textDissertation/Thesis
Masters Thesis Computer Science 2019
Jesus, José Vitor Oliveira de. "Introdução à teoria espectral de grafos." Master's thesis, 2018. http://hdl.handle.net/10400.13/2115.
Full textThe main purpose of this dissertation is to make an introduction to the spectral graph theory. We will study some properties of graphs, namely the characteristic polynomial, the eigenvalues and the eigenvectors speci…c to matrices associated with graphs. In this dissertation, we will give more importance to the adjacency matrix and to the Laplacian matrix and we will do an analysis of some speci…c types of graphs and their respective spectra. We will study the energy of a graph and the measures of centrality associated to graphs and their inherent concepts. Two practical applications will be presented throughout the dissertation, one related to chemistry and quaternary carbon, in order to …nd out whether or not the quaternary carbon exists in the molecule under study, and another one related to the centrality measures in which the analysis of the football match “Portugal versus France”, that de…ned the European Champion of 2016 will be done, with the objective of sorting out the performances of the players on the …eld.