Academic literature on the topic 'Laplacian smoothing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Laplacian smoothing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Laplacian smoothing"

1

Field, David A. "Laplacian smoothing and Delaunay triangulations." Communications in Applied Numerical Methods 4, no. 6 (November 1988): 709–12. http://dx.doi.org/10.1002/cnm.1630040603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Xiao Ling, and Hui Zhao. "Virtual Mechanical Equipment Model Smoothing." Advanced Materials Research 156-157 (October 2010): 355–59. http://dx.doi.org/10.4028/www.scientific.net/amr.156-157.355.

Full text
Abstract:
We present a system to remove noise or smooth three dimensional (3D) virtual mechanical equipment models. Our system works not in well-known Euclidean space, but in Laplacian space [1, 2]. We transform the model from its global representation into the local representation. Then we manipulate the local property with the Laplacian Coordinates [1]. Our whole system can be modeled as a huge sparse linear system which can be solved very fast by state-of-art numerical solver [3].
APA, Harvard, Vancouver, ISO, and other styles
3

O'sullivan, Finbarr. "Discretized Laplacian Smoothing by Fourier Methods." Journal of the American Statistical Association 86, no. 415 (September 1991): 634–42. http://dx.doi.org/10.1080/01621459.1991.10475089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hansbo, Peter. "Generalized Laplacian smoothing of unstructured grids." Communications in Numerical Methods in Engineering 11, no. 5 (May 1995): 455–64. http://dx.doi.org/10.1002/cnm.1640110510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gu, SuiCheng, Ying Tan, and XinGui He. "Laplacian smoothing transform for face recognition." Science China Information Sciences 53, no. 12 (November 26, 2010): 2415–28. http://dx.doi.org/10.1007/s11432-010-4099-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xiao, Lei, Guoxiang Yang, Kunyang Zhao, and Gang Mei. "Efficient Parallel Algorithms for 3D Laplacian Smoothing on the GPU." Applied Sciences 9, no. 24 (December 11, 2019): 5437. http://dx.doi.org/10.3390/app9245437.

Full text
Abstract:
In numerical modeling, mesh quality is one of the decisive factors that strongly affects the accuracy of calculations and the convergence of iterations. To improve mesh quality, the Laplacian mesh smoothing method, which repositions nodes to the barycenter of adjacent nodes without changing the mesh topology, has been widely used. However, smoothing a large-scale three dimensional mesh is quite computationally expensive, and few studies have focused on accelerating the Laplacian mesh smoothing method by utilizing the graphics processing unit (GPU). This paper presents a GPU-accelerated parallel algorithm for Laplacian smoothing in three dimensions by considering the influence of different data layouts and iteration forms. To evaluate the efficiency of the GPU implementation, the parallel solution is compared with the original serial solution. Experimental results show that our parallel implementation is up to 46 times faster than the serial version.
APA, Harvard, Vancouver, ISO, and other styles
7

Xi, Ning, Yinjie Sun, Lei Xiao, and Gang Mei. "Designing Parallel Adaptive Laplacian Smoothing for Improving Tetrahedral Mesh Quality on the GPU." Applied Sciences 11, no. 12 (June 15, 2021): 5543. http://dx.doi.org/10.3390/app11125543.

Full text
Abstract:
Mesh quality is a critical issue in numerical computing because it directly impacts both computational efficiency and accuracy. Tetrahedral meshes are widely used in various engineering and science applications. However, in large-scale and complicated application scenarios, there are a large number of tetrahedrons, and in this case, the improvement of mesh quality is computationally expensive. Laplacian mesh smoothing is a simple mesh optimization method that improves mesh quality by changing the locations of nodes. In this paper, by exploiting the parallelism features of the modern graphics processing unit (GPU), we specifically designed a parallel adaptive Laplacian smoothing algorithm for improving the quality of large-scale tetrahedral meshes. In the proposed adaptive algorithm, we defined the aspect ratio as a metric to judge the mesh quality after each iteration to ensure that every smoothing improves the mesh quality. The adaptive algorithm avoids the shortcoming of the ordinary Laplacian algorithm to create potential invalid elements in the concave area. We conducted 5 groups of comparative experimental tests to evaluate the performance of the proposed parallel algorithm. The results demonstrated that the proposed adaptive algorithm is up to 23 times faster than the serial algorithms; and the accuracy of the tetrahedral mesh is satisfactorily improved after adaptive Laplacian mesh smoothing. Compared with the ordinary Laplacian algorithm, the proposed adaptive Laplacian algorithm is more applicable, and can effectively deal with those tetrahedrons with extremely poor quality. This indicates that the proposed parallel algorithm can be applied to improve the mesh quality in large-scale and complicated application scenarios.
APA, Harvard, Vancouver, ISO, and other styles
8

Griffin, M. P., F. Chen, K. L. McMahon, G. Campbell, S. J. Wilson, S. E. Rose, M. Veidt, C. J. Bennett, M. Wegner, and D. M. Doddrell. "Measuring cardiac strain using Laplacian smoothing splines." ANZIAM Journal 44 (April 1, 2003): 249. http://dx.doi.org/10.21914/anziamj.v44i0.681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vollmer, J., R. Mencl, and H. Muller. "Improved Laplacian Smoothing of Noisy Surface Meshes." Computer Graphics Forum 18, no. 3 (September 1999): 131–38. http://dx.doi.org/10.1111/1467-8659.00334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhan, Yi. "The Nonlocalp-Laplacian Evolution for Image Interpolation." Mathematical Problems in Engineering 2011 (2011): 1–11. http://dx.doi.org/10.1155/2011/837426.

Full text
Abstract:
This paper presents an image interpolation model with nonlocalp-Laplacian regularization. The nonlocalp-Laplacian regularization overcomes the drawback of the partial differential equation (PDE) proposed by Belahmidi and Guichard (2004) that image density diffuses in the directions pointed bylocalgradient. The grey values of images diffuse along image feature direction not gradient direction under the control of the proposed model, that is, minimal smoothing in the directions across the image features and maximal smoothing in the directions along the image features. The total regularizer combines the advantages of nonlocalp-Laplacian regularization and total variation (TV) regularization (preserving discontinuities and 1D image structures). The derived model efficiently reconstructs the real image, leading to a natural interpolation, with reduced blurring and staircase artifacts. We present experimental results that prove the potential and efficacy of the method.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Laplacian smoothing"

1

Bacchiocchi, Silvia. "Implementazione di algoritmi di smoothing per modelli tridimensionali di componenti aerospaziali." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020.

Find full text
Abstract:
L’ottimizzazione topologica permette di ottenere, tramite il posizionamento ottimizzato di materiale in un volume pieno, un componente in grado di resistere ad un assegnato sforzo limitandone il peso ed il materiale utilizzato. Si ottiene dall'ottimizzazione topologica un oggetto formato da una serie di unità elementari, chiamate voxel. Per riuscire a smussare questi spigoli indesiderati, è necessario l’utilizzo di un processo numerico di levigatura, ottenuto con algoritmi di smoothing. Il problema che potrebbe nascere dall'impiego di questi ultimi è che venga levigato un quantitativo eccessivo di materiale: questo avviene in tutte le parti del componente, anche in quelle sottili dove spesso la struttura collassa in forme prive di resistenza. In certi punti si rischia che con lo smoothing la struttura non sia più in grado di sopportare al meglio gli sforzi senza giungere alla rottura o alla deformazione del pezzo stesso. Per queste motivazioni, l’obiettivo principale del seguente studio consiste nel confrontare vari algoritmi presenti in letteratura e modificare un codice già esistente basato sul Laplacian Smoothing: questo algoritmo è stato implementato in questa tesi di laurea. In particolare, l’algoritmo sviluppato cerca di mitigare il problema della riduzione del materiale nei punti critici scalando il modello ogni iterazione di smoothing in modo da mantenere costante il volume del componente. Inoltre, l’algoritmo sviluppato deve lasciare intatte le superfici piane e gli spigoli che non necessitano di tale operazione. Le modifiche da me apportate all'algoritmo Laplacian smoothing così come descritto in letteratura, hanno permesso di raggiungere tali obiettivi. I componenti ottenuti in seguito allo smoothing con l’algoritmo da me implementato, infatti, possiedono un volume pari a quello di partenza; superfici di contatto e fori non sono modificati dallo smoothing, risultando simili al modello originale.
APA, Harvard, Vancouver, ISO, and other styles
2

Tronchin, Edoardo. "Implementazione di algoritmi di smoothing per strutture aerospaziali ottimizzate topologicamente." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020.

Find full text
Abstract:
La tesi ha come scopo la valutazione e l’implementazione di algoritmi di smoothing adatti a processare corpi ottenuti in seguito ad ottimizzazione topologica. Questi corpi presentano spesso irregolarità ed è richiesta una operazione di smoothing dei modelli CAD ottenuti. In particolare, sarebbe utile avere a disposizione un codice di smoothing che abbia ottime proprietà di levigatura e conservi, per quanto possibile, il volume del corpo originale. Inoltre, un codice di smoothing adatto alla valutazione dei corpi non deve presentare problemi di “shrinkage” (increspatura), “irregolarità” e “vertex-drifting” (deriva dei vertici). Inizialmente si è applicato lo smoothing a mesh poco complesse con l’uso di algoritmi più noti come il Laplacian smoothing, HC-algorithm e lo Scale-Dependent Umbrella (SDU). In seguito, sono stati implementati due nuovi algoritmi (HC_SDU1 e HC_SDU2) con struttura di base simile all’HC-algorithm e all’SDU, così da avere i vantaggi legati a questi due codici e limitando al contempo le criticità. I quattro algoritmi (escludendo il Laplacian smoothing) sono stati valutati su quattro corpi realizzati in voxel, andando poi a visualizzare su di un grafico l’andamento del cambiamento totale del corpo, del volume totale e dell’area totale. A seguito dei test, si è visto che solamente HC_SDU2 e l’HC-algorithm sono riusciti ad ottenere risultati discreti. Al momento attuale però, confrontando i dati dell’HC-algorithm con l’HC_SDU2 si è visto che la differenza in termini di cambiamento di forma totale è minima. I margini di miglioramento però sono maggiori nell’HC_SDU2 piuttosto che nell’HC-algorithm, perciò si può concludere che in questa tesi è stato individuato un algoritmo innovativo con potenzialità che potrebbero renderlo una valida alternativa ai classici algoritmi di smoothing.
APA, Harvard, Vancouver, ISO, and other styles
3

Lu, Yibiao. "Statistical methods with application to machine learning and artificial intelligence." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44730.

Full text
Abstract:
This thesis consists of four chapters. Chapter 1 focuses on theoretical results on high-order laplacian-based regularization in function estimation. We studied the iterated laplacian regularization in the context of supervised learning in order to achieve both nice theoretical properties (like thin-plate splines) and good performance over complex region (like soap film smoother). In Chapter 2, we propose an innovative static path-planning algorithm called m-A* within an environment full of obstacles. Theoretically we show that m-A* reduces the number of vertex. In the simulation study, our approach outperforms A* armed with standard L1 heuristic and stronger ones such as True-Distance heuristics (TDH), yielding faster query time, adequate usage of memory and reasonable preprocessing time. Chapter 3 proposes m-LPA* algorithm which extends the m-A* algorithm in the context of dynamic path-planning and achieves better performance compared to the benchmark: lifelong planning A* (LPA*) in terms of robustness and worst-case computational complexity. Employing the same beamlet graphical structure as m-A*, m-LPA* encodes the information of the environment in a hierarchical, multiscale fashion, and therefore it produces a more robust dynamic path-planning algorithm. Chapter 4 focuses on an approach for the prediction of spot electricity spikes via a combination of boosting and wavelet analysis. Extensive numerical experiments show that our approach improved the prediction accuracy compared to those results of support vector machine, thanks to the fact that the gradient boosting trees method inherits the good properties of decision trees such as robustness to the irrelevant covariates, fast computational capability and good interpretation.
APA, Harvard, Vancouver, ISO, and other styles
4

Garg, Deepak. "Smoothing Wavelet Reconstruction." Thesis, 2013. http://hdl.handle.net/1969.1/149509.

Full text
Abstract:
This thesis present a new algorithm for creating high quality surfaces from large data sets of oriented points, sampled using a laser range scanner. This method works in two phases. In the first phase, using wavelet surface reconstruction method, we calculate a rough estimate of the surface in the form of Haar wavelet coefficients, stored in an Octree. In the second phase, we modify these coefficients to obtain a higher quality surface. We cast this method as a gradient minimization problem in the wavelet domain. We show that the solution to the gradient minimization problem, in the wavelet domain, is a sparse linear system with dimensionality roughly proportional to the surface of the model in question. We introduce a fast inplace method, which uses various properties of Haar wavelets, to solve the linear system and demonstrate the results of the algorithm.
APA, Harvard, Vancouver, ISO, and other styles
5

Stein, Oded. "Smoothness Energies in Geometry Processing." Thesis, 2020. https://doi.org/10.7916/d8-1mb2-pb03.

Full text
Abstract:
This thesis presents an analysis of several smoothness energies (also called smoothing energies) in geometry processing, and introduces new methods as well as a mathematical proof of correctness and convergence for a well-established method. Geometry processing deals with the acquisition, modification, and output (be it on a screen, in virtual reality, or via fabrication and manufacturing) of complex geometric objects and data. It is closely related to computer graphics, but is also used by many other fields that employ applied mathematics in the context of geometry. The popular Laplacian energy is a smoothness energy that quantifies smoothness and that is closely related to the biharmonic equation (which gives it desirable properties). Minimizers of the Laplacian energy solve the biharmonic equation. This thesis provides a proof of correctness and convergence for a very popular discretization method for the biharmonic equation with zero Dirichlet and Neumann boundary conditions, the piecewise linear Lagrangian mixed finite element method. The same approach also discretizes the Laplacian energy. Such a proof has existed for flat surfaces for a long time, but there exists no such proof for the curved surfaces that are needed to represent the complicated geometries used in geometry processing. This proof will improve the usefulness of this discretization for the Laplacian energy. In this thesis, the novel Hessian energy for curved surfaces is introduced, which also quantifies the smoothness of a functions, and whose minimizers solve the biharmonic equation. This Hessian energy has natural boundary conditions that allow the construction of functions that are not significantly biased by the geometry and presence of boundaries in the domain (unlike the Laplacian energy with zero Neumann boundary conditions), while still conforming to constraints informed by the application. This is useful in any situation where the boundary of the domain is not an integral part of the problem itself, but just an artifact of data representation---be it, because of artifacts created by an imprecise scan of the surface, because information is missing outside of a certain region, or because the application simply demands a result that should not depend on the geometry of the boundary. Novel discretizations of this energy are also introduced and analyzed. This thesis also presents the new developability energy, which quantifies a different kind of smoothness than the Laplacian and Hessian energies: how easy is it to unfold a surface so that it lies flat on the plane without any distortion (surfaces for which this is possible are called developable surfaces). Developable surfaces are interesting, as they can be easily constructed from cheap material such as paper and plywood, or manufactured with methods such as 5-axis CNC milling. A novel definition of developability for discrete triangle meshes, as well as a variety of discrete developability energies are also introduced and applied to problems such as approximation of a surface by a piecewise developable surface, and the design and fabrication of piecewise developable surfaces. This will enable users to more easily take advantages of these cheap and quick fabrication methods. The novel methods, algorithms and the mathematical proof introduced in this thesis will be useful in many applications and fields, including numerical analysis of elliptic partial differential equations, geometry processing of triangle meshes, character animation, data denoising, data smoothing, scattered data interpolation, fabrication from simple materials, computer-controlled fabrication, and more.
APA, Harvard, Vancouver, ISO, and other styles
6

Barroqueiro, Bruno João da Fonseca. "Methodologies for an optimum mechanical design of space structures obtained from additive manufacturing." Doctoral thesis, 2020. http://hdl.handle.net/10773/29822.

Full text
Abstract:
Additive Layer Manufacturing (ALM) is growing rapidly due to the unprecedented design freedom. Thus, the structures' complexity can be drastically increased without significant raises in costs. However, the economic viability of ALM is strongly dependent on the full exploration of the referred design freedom. In fact, the ALM is only cost-effective in highly customized parts. Moreover, the mechanical behavior of materials processed via ALM is an ongoing challenge due to defects, uncertainties in material characterization, and verification methods. Thus, the goal of the present work is the development of a robust methodology for the mechanical optimum design of metallic space structures obtained from additive manufacturing. Thus, two main tasks were established. The first task is related to the mechanical characterization of a Ti6Al4V alloy, processed via Selective Laser Melting (SLM). Therefore, an experimental testing campaign of Ti6Al4V samples is presented using homogeneous macroscopic testing (tensile, compression, density, hardness, and fatigue) and microscopic testing (defects detection via microcomputed tomography). These samples show better static properties than the other counterparts, obtained by traditional manufacturing processes. However, the repeatability of the SLM samples is still a challenge (particularly in its fatigue behavior) and more testing is needed. Furthermore, these campaigns are expensive and, consequently, more information per test is required. With the development of full-field measurement methods, material model calibration strategies call upon the use of heterogeneous testing specimens. In the scope of this work, an indirect TO methodology is presented, being capable of designing a wide range of different heterogeneous specimens. Then, a stress states performance indicator is also presented to help the selection of the most promising geometry. The second task is related to the definition of the engineering cycle for ALM structures in its mains phases: (i) design for ALM, (ii) bridging between Topology Optimization (TO) and ALM, (iii) process simulation and structural verification, and (iv) manufacturing. Concerning the first phase, ALM provides great geometric freedom however, there are some design limitations. Therefore, a systematic design methodology is presented, being based on a topology optimization algorithm capable of incorporating the main ALM design limitations (minimum member size and overhang angle). Furthermore, the non-trivial task of bridging between TO and the final smooth geometry is also studied (second phase). The referred task uses a Laplacian smoothing algorithm, which is based on the new concept of mutable diffusion. This new concept shows better properties than the classic algorithms, giving promising results. Furthermore, a new volume constraint is presented, which exhibits a less detrimental impact on the chosen structural indicators. Regarding the remaining phases, these were analyzed via industrial case studies. For instance, process simulation can provide crucial insight into the optimum manufacturing direction and might dictate the difference between success and failure upon manufacturing. The impact of this Ph.D. is related with some improvements in (i) the characterization of ALM-produced materials as well as the geometry of the specimens used for their characterization; and in (ii) the engineering cycle of ALM structures, allowing higher efficiency in the structural solutions for the space industry with lower costs.
O uso do fabrico aditivo por camadas está a crescer a um elevado ritmo devido À elevada liberdade de projeto de estruturas. Assim, a complexidade das estruturas pode ser aumentada significativamente sem incrementos significativos nos custos. Todavia, a viabilidade económica do fabrico aditivo por camadas é fortemente dependente de uma exploração inteligente da liberdade de projeto estrutural. Na verdade, o fabrico aditivo por camadas só é rentável em peças de elevada complexidade e valor acrescentado. Adicionalmente, o comportamento mecânico de materiais processados através do fabrico aditivo por camadas é ainda um desafio por resolver devido à existência de defeitos, incertezas na caracterização de materiais e nos seus métodos de velicação. Deste modo, o objetivo deste trabalho é o desenvolvimento de uma metodologia robusta que permita o projeto mecânico ótimo de estruturas obtidas por fabrico aditivo para a indústria espacial. Para isso, foram estabelecidas duas tarefas principais. A primeira tarefa está relacionada com a caracterização mecânica da liga Ti6Al4V, processada através da fusão seletiva a laser. Portanto, foi realizado uma campanha de testes experimentais com provetes da liga Ti6Al4V composta por testes macroscópicos homogéneos (tração, compressão, densidade, dureza e fadiga) e testes microscópicos (deteção de defeitos usando uma análise com recurso à tomografia microcomputorizada). Foi verificado que estas amostras exibem melhor propriedades estáticas que amostras idênticas produzidas através de processos tradicionais. Contudo, a sua repetibilidade ainda é um desafio (particularmente o comportamento à fadiga), sendo necessário mais testes. Adicionalmente, estas campanhas experimentais são onerosas e, consequentemente, é crítico obter mais informação por cada teste realizado. Dado o desenvolvimento dos métodos de medição full-field, as estratégias de calibração de modelos de material propiciam o uso de provetes heterogéneos em testes mecânicos. No ^âmbito deste trabalho apresenta-se uma metodologia de otimização topológica indireta capaz de projetar uma grande variedade de provetes heterógenos. Posteriormente apresenta-se um indicador de desempenho baseado na quantidade de estados de tensão para selecionar o provete mais promissor. A segunda tarefa está relacionada com a definição do ciclo de engenharia para o fabrico aditivo por camadas de estruturas metálicas nas suas fases principais: (i) projeto para fabrico aditivo por camadas, (ii) transição entre a otimização topológica e o fabrico aditivo por camadas, (iii) simulação do seu processo de fabrico e sua verificação estrutural e (iv) fabrico. Relativamente à primeira fase, o fabrico aditivo por camadas proporciona uma grande liberdade geométrica, contudo existe limitações ao design. Portanto é apresentada uma metodologia de projeto sistemática, baseada num algoritmo de otimização topológica capaz de incorporar as principais limitações de projeto do fabrico aditivo por camadas tais como a espessura mínima e ângulo do material sem suporte. Adicionalmente, a tarefa complexa de efetuar a transição entre os resultados da otimização topológica e uma geometria final suave também é objeto de estudo. A tarefa anteriormente referida baseia-se na suavização Laplaciana que por sua vez se baseia no novo conceito de difusão mutável. Este novo conceito apresenta melhores e mais promissores resultados que os algoritmos clássicos. Adicionalmente, é apresentado uma nova restrição de volume que proporciona um menor impacto nos indicadores estruturais escolhidos. Relativamente às restantes fases, estas são analisadas através de casos de estudo industriais. A título exemplar, a simulação do processo de fabrico pode fornecer informações crucias para a escolha da direção de fabrico que, por sua vez, pode ditar a diferença entre o sucesso ou o insucesso durante o fabrico. O impacto deste trabalho está relacionado com melhorias na (i) caracterização de materiais produzidos através de fabrico aditivo por camadas assim como nas geometrias de provetes usados durante a sua caracterização e no (ii) ciclo de projeto em engenharia de estruturas obtidas através do fabrico aditivo por camadas, permitindo soluções estruturais com maior eficiência e menor custo para indústria espacial.
Programa Doutoral em Engenharia Mecânica
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Laplacian smoothing"

1

Franke, Richard H. Laplacian smoothing splines with generalized cross validation for objective analysis of meteorological data. Monterey, California: Naval Postgraduate School, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Laplacian smoothing"

1

Yang, Ying, Holly Rushmeier, and Ioannis Ivrissimtzis. "Order-Randomized Laplacian Mesh Smoothing." In Mathematical Methods for Curves and Surfaces, 312–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67885-6_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhihong, Mao, Ma Lizhuang, Zhao Mingxi, and Li Zhong. "A Modified Laplacian Smoothing Approach with Mesh Saliency." In Smart Graphics, 105–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11795018_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Zhenyu, Fenlin Liu, and Adrian G. Bors. "3D Steganalysis Using Laplacian Smoothing at Various Levels." In Cloud Computing and Security, 223–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00021-9_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Ligang, Yao Zheng, Jianjun Chen, and Yi Liang. "An Improved Laplacian Smoothing Approach for Surface Meshes." In Computational Science – ICCS 2007, 318–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72584-8_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ai, Guoguo, Hui Yan, Jian Yang, and Xin Li. "Beyond Laplacian Smoothing for Semi-supervised Community Detection." In Knowledge Science, Engineering and Management, 174–87. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82153-1_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Badri, Hicham, Mohammed El Hassouni, and Driss Aboutajdine. "Kernel-Based Laplacian Smoothing Method for 3D Mesh Denoising." In Lecture Notes in Computer Science, 77–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31254-0_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Li, Hongzhi Zhang, Dongwei Ren, David Zhang, and Wangmeng Zuo. "Fast Augmented Lagrangian Method for Image Smoothing with Hyper-Laplacian Gradient Prior." In Communications in Computer and Information Science, 12–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45643-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ul Rahman, Jamshaid, Akhtar Ali, Masood Ur Rehman, and Rafaqat Kazmi. "A Unit Softmax with Laplacian Smoothing Stochastic Gradient Descent for Deep Convolutional Neural Networks." In Communications in Computer and Information Science, 162–74. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5232-8_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhou, Wei, Rencan Peng, Lihua Zhang, and Wanjin Wang. "Topographic feature line extraction from point cloud based on SSV and HC-Laplacian smoothing." In Advances in Energy and Environment Research, 235–42. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315212876-45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Iqbal, Mansoor, Muhammad Awais Rehman, Naveed Iqbal, and Zaheer Iqbal. "Effect of Laplacian Smoothing Stochastic Gradient Descent with Angular Margin Softmax Loss on Face Recognition." In Communications in Computer and Information Science, 549–61. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5232-8_47.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Laplacian smoothing"

1

Aupy, Guillaume, JeongHyung Park, and Padma Raghavan. "Locality-Aware Laplacian Mesh Smoothing." In 2016 45th International Conference on Parallel Processing (ICPP). IEEE, 2016. http://dx.doi.org/10.1109/icpp.2016.74.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

M. A. Manmi, Kawa. "New Weights in Laplacian Smoothing on Triangular Mesh." In 1st International Conference on Information Technology. Lebanese French University - LFU, 2017. http://dx.doi.org/10.25212/icoit17.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhou, Yuanfeng, Caiming Zhang, and Shanshan Gao. "A Quasi-Laplacian Smoothing Approach on Arbitrary Triangular Meshes." In 2007 10th IEEE International Conference on Computer-Aided Design and Computer Graphics. IEEE, 2007. http://dx.doi.org/10.1109/cadcg.2007.4407895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gutfinger, Ron S., and Raj Abraham. "Subsmoothing: An Optimized Smoothing Method." In ASME 1993 International Computers in Engineering Conference and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/cie1993-0014.

Full text
Abstract:
Abstract Usually, a mesh created by an automatic mesh generator is of low quality. In order to improve the mesh quality, a smoothing algorithm is applied on the mesh. The result is a mesh ready for analysis. The smoothing is a CPU intensive iterative process. In some cases, smoothing may take longer than the initial mesh creation. In this work an optimized smoothing algorithm is presented. While iterating, the algorithm recognizes nodes that are sufficiently smoothed, and ignores them in subsequent iterations. Progressively, a smaller and smaller subset of nodes is smoothed. The result is less CPU time spent per iteration, and some decrease in the total number of iterations. This method, called subsmoothing, is applied on Laplacian smoothing of shell meshes. Examples show 30% CPU time savings and little change in mesh quality (¼%).
APA, Harvard, Vancouver, ISO, and other styles
5

Vervenne, K., and F. van Keulen. "Accuracy improvement of semi-analytical design sensitivities by Laplacian smoothing." In 19th AIAA Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-1497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Parthasarathy, V. N., and Srinivas Kodiyalam. "A Constrained Optimization Approach to Finite Element Mesh Smoothing." In ASME 1991 International Computers in Engineering Conference and Exposition. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/cie1991-0064.

Full text
Abstract:
Abstract The quality of a finite element solution has been shown to be affected by the quality of the underlying mesh. A poor mesh may lead to unstable and lor inaccurate finite element approximations. Mesh quality is often characterized by the “smoothness” or “shape” of the elements (triangles in 2-D or tetrahedra in 3-D). Most automatic mesh generators produce an initial mesh where the aspect ratio of the elements are unacceptably high. In this paper, a new approach to produce acceptable quality meshes from an initial mesh is presented. Given an initial mesh (nodal coordinates and element connectivity), a “smooth” final mesh is obtained by solving a constrained optimization problem. The variables for the iterative optimization procedure are the nodal coordinates (excluding, the boundary nodes) of the finite element mesh, and appropriate bounds are imposed on these to prevent an unacceptable finite element mesh. Examples are given of the application of the above method for 2/3-D triangular meshes generated using a QUADTREE | OCTREE automatic mesh generators. Results indicate that the new method not only yields better quality elements when compared with the traditional Laplacian smoothing, but also guarantees a valid mesh unlike the Laplacian method.
APA, Harvard, Vancouver, ISO, and other styles
7

Tan, Ke, and Yuan Gao. "Three-Dimensional Liver Reconstruction Based on Marching Cube and Revised Laplacian Smoothing." In 2016 International Conference on Intelligent Control and Computer Application (ICCA 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icca-16.2016.59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shin, Jeong-Ho, Yiyong Sun, Woongchan Jung, Joon-Ki Paik, and Mongi A. Abidi. "Adaptive regularized noise smoothing of dense range image using directional Laplacian operators." In Photonics West 2001 - Electronic Imaging, edited by Brian D. Corner, Joseph H. Nurre, and Roy P. Pargas. SPIE, 2001. http://dx.doi.org/10.1117/12.424896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Daun, K. J. "Infrared Species Limited Data Tomography Through Tikhonov Reconstruction." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88218.

Full text
Abstract:
Optical tomography based on infrared laser light absorption is a promising way to measure spatially- and temporally-resolved fuel concentrations within combustion devices, but limited optical access often restricts the number of laser beams and their arrangement. This paper demonstrates how Tikhonov regularization based on a Laplacian smoothing matrix can solve the resulting limited data tomography problem, and provides superior reconstructions for Gaussian phantoms compared to modified Landweber reconstruction.
APA, Harvard, Vancouver, ISO, and other styles
10

Yahiaoui, B., H. Borouchaki, A. Benali, and C. Bennis. "Optimization of Dynamic 3D Hex-dominant Mesh Adapted for Basins Simulation Using the Smoothing Laplacian 2D." In ECMOR XIII - 13th European Conference on the Mathematics of Oil Recovery. Netherlands: EAGE Publications BV, 2012. http://dx.doi.org/10.3997/2214-4609.20143256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography