Journal articles on the topic 'LARGE BANDWIDTH'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'LARGE BANDWIDTH.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ozawa, Akira, and Thomas Udem. "Very large bandwidth lasers." Nature Photonics 15, no. 4 (2021): 247–49. http://dx.doi.org/10.1038/s41566-021-00788-w.
Full textCheng, Scott, Jun-Liang Lin, Murali Emani, et al. "Thorough Characterization and Analysis of Large Transformer Model Training At-Scale." Proceedings of the ACM on Measurement and Analysis of Computing Systems 8, no. 1 (2024): 1–25. http://dx.doi.org/10.1145/3639034.
Full textCheng, Scott, Jun-Liang Lin, Murali Emani, et al. "Thorough Characterization and Analysis of Large Transformer Model Training At-Scale." ACM SIGMETRICS Performance Evaluation Review 52, no. 1 (2024): 39–40. http://dx.doi.org/10.1145/3673660.3655087.
Full textFuss, Ian. "Cryogenic large bandwidth acoustooptic deflectors." Applied Optics 26, no. 7 (1987): 1222. http://dx.doi.org/10.1364/ao.26.001222.
Full textJohnson, Aaron, Rob Jansen, Nicholas Hopper, Aaron Segal, and Paul Syverson. "PeerFlow: Secure Load Balancing in Tor." Proceedings on Privacy Enhancing Technologies 2017, no. 2 (2017): 74–94. http://dx.doi.org/10.1515/popets-2017-0017.
Full textÖZSOY, Şeyma Nur, and Sevilay KİLMEN. "Comparison of Kernel equating methods under NEAT and NEC designs." International Journal of Assessment Tools in Education 10, no. 1 (2023): 56–75. http://dx.doi.org/10.21449/ijate.981367.
Full textAlshaykh, Mohammed S. "Generating Large Time–Bandwidth Product RF-Chirped Waveforms Using Vernier Dual-Optical Frequency Combs." Photonics 12, no. 7 (2025): 700. https://doi.org/10.3390/photonics12070700.
Full textCroq, F., and A. Papiernik. "Large bandwidth aperture-coupled microstrip antenna." Electronics Letters 26, no. 16 (1990): 1293. http://dx.doi.org/10.1049/el:19900832.
Full textSøndergaard, Thomas, and Andrei Lavrinenko. "Large-bandwidth planar photonic crystal waveguides." Optics Communications 203, no. 3-6 (2002): 263–70. http://dx.doi.org/10.1016/s0030-4018(02)01172-0.
Full textThouin, Frederic, Mark Coates, and Michael Rabbat. "Large scale probabilistic available bandwidth estimation." Computer Networks 55, no. 9 (2011): 2065–78. http://dx.doi.org/10.1016/j.comnet.2011.02.011.
Full textGrose, John H., Joseph W. Hall, and Madhu B. Dev. "MLD in Children." Journal of Speech, Language, and Hearing Research 40, no. 4 (1997): 955–59. http://dx.doi.org/10.1044/jslhr.4004.955.
Full textBarreiro-Ures, Daniel, Ricardo Cao, and Mario Francisco-Fernández. "Bandwidth Selection in Nonparametric Regression with Large Sample Size." Proceedings 2, no. 18 (2018): 1166. http://dx.doi.org/10.3390/proceedings2181166.
Full textZhao, Hezhang, Hu He, Shifeng Li, et al. "KlyH: 1D Disk Model-Based Large-Signal Simulation Software for Klystrons." Electronics 14, no. 11 (2025): 2223. https://doi.org/10.3390/electronics14112223.
Full textCui, Zhichao, Haigang Hou, Shahid Hussain, Guiwu Liu, and Guanjun Qiao. "Study on Innovative Flexible Design Method for Thin Film Narrow Band-Pass Filters." Journal of Nanoelectronics and Optoelectronics 17, no. 1 (2022): 112–20. http://dx.doi.org/10.1166/jno.2022.3176.
Full textNgo, K. D. T., S. Kirachaiwanich, and M. Walters. "Buck modulator with improved large-power bandwidth." IEEE Transactions on Aerospace and Electronic Systems 38, no. 4 (2002): 1335–43. http://dx.doi.org/10.1109/taes.2002.1145754.
Full textLevine, E., S. Shtrikman, and D. Treves. "Double-sided printed arrays with large bandwidth." IEE Proceedings H Microwaves, Antennas and Propagation 135, no. 1 (1988): 54. http://dx.doi.org/10.1049/ip-h-2.1988.0010.
Full textChristov, I. P., and I. V. Tomov. "Large bandwidth pulse compression with diffraction gratings." Optics Communications 58, no. 5 (1986): 338–42. http://dx.doi.org/10.1016/0030-4018(86)90240-3.
Full textGiusi, Gino, Gianluca Cannatà, Graziella Scandurra, and Carmine Ciofi. "Ultra-low-noise large-bandwidth transimpedance amplifier." International Journal of Circuit Theory and Applications 43, no. 10 (2014): 1455–73. http://dx.doi.org/10.1002/cta.2015.
Full textHoefler, Torsten, Tommaso Bonoto, Daniele De Sensi, et al. "HammingMesh: A Network Topology for Large-Scale Deep Learning." Communications of the ACM 67, no. 12 (2024): 97–105. http://dx.doi.org/10.1145/3623490.
Full textKoepfli, Stefan M., Michael Baumann, Yesim Koyaz, et al. "Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz." Science 380, no. 6650 (2023): 1169–74. http://dx.doi.org/10.1126/science.adg8017.
Full textKakoyiannis, Constantine G., and Philip Constantinou. "Compact Printed Arrays with Embedded Coupling Mitigation for Energy-Efficient Wireless Sensor Networking." International Journal of Antennas and Propagation 2010 (2010): 1–18. http://dx.doi.org/10.1155/2010/596291.
Full textWu, Ji, Li Liang, Kefeng Tu, Kunying Li, Zi Wang, and Guoqiang Lü. "Serrated periodic electrode for high energy efficiency and large bandwidth acousto-optic modulators." Chinese Optics Letters 21, no. 3 (2023): 031403. http://dx.doi.org/10.3788/col202321.031403.
Full textMa, Yanyan, Rong Wu, and Longfei Li. "Research on slow light transmission with wide bandwidth and large normalized delay bandwidth product." Optoelectronics Letters 17, no. 7 (2021): 407–11. http://dx.doi.org/10.1007/s11801-021-0125-3.
Full textZhao, Lei, Lei Shi, and Congying Zhu. "New Nonlinear Second-Order Phase-Locked Loop with Adaptive Bandwidth Regulation." Electronics 7, no. 12 (2018): 346. http://dx.doi.org/10.3390/electronics7120346.
Full textMohamed, Bikrat, and Bri Seddik. "A bandwidth reconfigurable antenna for devices in low UWB-applications." TELKOMNIKA (Telecommunication, Computing, Electronics and Control) 21, no. 2 (2023): 272–79. https://doi.org/10.12928/telkomnika.v21i2.24256.
Full textHachi, Asmae, Hassan Lebbar, and Mohamed Himdi. "3D PRINTED LARGE BANDWIDTH NEW YAGI-UDA ANTENNA." Progress In Electromagnetics Research Letters 88 (2020): 129–35. http://dx.doi.org/10.2528/pierl19101303.
Full textOner, B. B., K. Üstün, H. Kurt, A. K. Okyay, and G. Turhan-Sayan. "Large bandwidth mode order converter by differential waveguides." Optics Express 23, no. 3 (2015): 3186. http://dx.doi.org/10.1364/oe.23.003186.
Full textChang, H. S., K. J. Satzinger, Y. P. Zhong, et al. "A fast and large bandwidth superconducting variable coupler." Applied Physics Letters 117, no. 24 (2020): 244001. http://dx.doi.org/10.1063/5.0028840.
Full textJones, M. C. "KERNEL DENSITY ESTIMATION WHEN THE BANDWIDTH IS LARGE." Australian Journal of Statistics 35, no. 3 (1993): 319–26. http://dx.doi.org/10.1111/j.1467-842x.1993.tb01339.x.
Full textLee, S., and J. H. Han. "Undulator operation for PAL-XFEL large bandwidth modes." Journal of Instrumentation 13, no. 08 (2018): T08007. http://dx.doi.org/10.1088/1748-0221/13/08/t08007.
Full textGinis, Vincent, Philippe Tassin, Thomas Koschny, and Costas M. Soukoulis. "Broadband metasurfaces enabling arbitrarily large delay-bandwidth products." Applied Physics Letters 108, no. 3 (2016): 031601. http://dx.doi.org/10.1063/1.4939979.
Full textPieraccini, M., A. Bicci, D. Mecatti, G. Macaluso, and C. Atzeni. "Propagation of Large Bandwidth Microwave Signals in Water." IEEE Transactions on Antennas and Propagation 57, no. 11 (2009): 3612–18. http://dx.doi.org/10.1109/tap.2009.2025674.
Full textWojtczuk, S. J., J. M. Ballantyne, Y. K. Chen, and S. Wanuga. "Monolithically integrated, photoreceiver with large, gain-bandwidth product." Electronics Letters 23, no. 11 (1987): 574–76. http://dx.doi.org/10.1049/el:19870411.
Full textMorrow, I., and J. R. James. "Sequentially rotated large bandwidth circularly polarised printed antennas." Electronics Letters 31, no. 24 (1995): 2062–64. http://dx.doi.org/10.1049/el:19951452.
Full textKhan, Salman Naeem, Xueguan Liu, Lvxia Shao, and Ying Wang. "COMPLEMENTARY SPLIT RING RESONATORS OF LARGE STOP BANDWIDTH." Progress In Electromagnetics Research Letters 14 (2010): 127–32. http://dx.doi.org/10.2528/pierl10033105.
Full textLewis, J. M. "Bandwidth utilization of a large local area network." IEEE Communications Magazine 27, no. 2 (1989): 25–30. http://dx.doi.org/10.1109/35.17650.
Full textRainal, A. J. "Bandwidth from a large excursion of Gaussian noise." IEEE Transactions on Instrumentation and Measurement 40, no. 4 (1991): 688–93. http://dx.doi.org/10.1109/19.85335.
Full textZhang, Honglin, and Jianhao Ye. "A Wideband High Gain Differential Patch Antenna Featuring In-Phase Radiating Apertures." Sensors 24, no. 14 (2024): 4641. http://dx.doi.org/10.3390/s24144641.
Full textSheikh, Sofia, Grayce C. Brown, Jackson MacTaggart, et al. "Scintillation Bandwidth Measurements from 23 Pulsars from the AO327 Survey." Astrophysical Journal 976, no. 2 (2024): 225. http://dx.doi.org/10.3847/1538-4357/ad8659.
Full textCsaba, Béla, and Bálint Vásárhelyi. "On the Relation of Separability, Bandwidth and Embedding." Graphs and Combinatorics 35, no. 6 (2019): 1541–53. http://dx.doi.org/10.1007/s00373-019-02086-3.
Full textYANG, HUI-MIN. "BANDWIDTH ENHANCEMENT IN CHAOTIC SEMICONDUCTOR LASERS WITH STRONG CHAOTIC OPTICAL INJECTION." Modern Physics Letters B 26, no. 12 (2012): 1250073. http://dx.doi.org/10.1142/s021798491250073x.
Full textJiang, Jingyan, Liang Hu, Chenghao Hu, Jiate Liu, and Zhi Wang. "BACombo—Bandwidth-Aware Decentralized Federated Learning." Electronics 9, no. 3 (2020): 440. http://dx.doi.org/10.3390/electronics9030440.
Full textChen, Qiang, Hou Zhang, Lu-chun Yang, Bin-bin Li, and Xue-liang Min. "Wideband Inverted-L Microstrip-via-Fed Circularly Polarized Antenna with Asymmetrical Ground for WLAN/Wimax Applications." Frequenz 72, no. 7-8 (2018): 333–41. http://dx.doi.org/10.1515/freq-2017-0075.
Full textQi, Junli, Xin Chen, Meicheng Fu, et al. "Effects of Optical Sampling Pulse Power, RF Power, and Electronic Back-End Bandwidth on the Performance of Photonic Analog-to-Digital Converter." Micromachines 14, no. 12 (2023): 2155. http://dx.doi.org/10.3390/mi14122155.
Full textFeng, Qi Bin, Yu Song Guo, and Guo Qiang Lv. "Design and Fabrication of Volume Holographic Gratings with Large Angular Bandwidth and High Diffraction Efficiency." Applied Mechanics and Materials 926 (April 23, 2025): 51–57. https://doi.org/10.4028/p-n2y8o4.
Full textMOSTAFA, HASSAN, HEWIDA MOHAMED, and A. M. SOLIMAN. "NOVEL FCS-BASED LAYOUT-FRIENDLY ACCURATE WIDE-BAND LOW-POWER CCII- REALIZATIONS." Journal of Circuits, Systems and Computers 19, no. 05 (2010): 997–1014. http://dx.doi.org/10.1142/s0218126610006566.
Full textPrat, Eduard, Marco Calvi, and Sven Reiche. "Generation of ultra-large-bandwidth X-ray free-electron-laser pulses with a transverse-gradient undulator." Journal of Synchrotron Radiation 23, no. 4 (2016): 874–79. http://dx.doi.org/10.1107/s1600577516007177.
Full textWootton, R., J. Dornan, N. M. Fisk, et al. "The effect of transmission bandwidth on diagnostic accuracy in remote fetal ultrasound scanning." Journal of Telemedicine and Telecare 3, no. 4 (1997): 209–14. http://dx.doi.org/10.1258/1357633971931183.
Full textKim, Sang Don, and Seung Eun Lee. "A Scalable Large Format Display Based on Zero Client Processor." International Journal of Electrical and Computer Engineering (IJECE) 5, no. 4 (2015): 714. http://dx.doi.org/10.11591/ijece.v5i4.pp714-719.
Full textGonzaga de Oliveira, Sanderson L., and Libério M. Silva. "Low-cost heuristics for matrix bandwidth reduction combined with a Hill-Climbing strategy." RAIRO - Operations Research 55, no. 4 (2021): 2247–64. http://dx.doi.org/10.1051/ro/2021102.
Full text