To see the other types of publications on this topic, follow the link: Large eddy simulation.

Journal articles on the topic 'Large eddy simulation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Large eddy simulation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Mathew, Joseph. "Large Eddy Simulation." Defence Science Journal 60, no. 6 (2010): 598–605. http://dx.doi.org/10.14429/dsj.60.602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tucker, Paul G., and Sylvain Lardeau. "Applied large eddy simulation." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, no. 1899 (2009): 2809–18. http://dx.doi.org/10.1098/rsta.2009.0065.

Full text
Abstract:
Large eddy simulation (LES) is now seen more and more as a viable alternative to current industrial practice, usually based on problem-specific Reynolds-averaged Navier–Stokes (RANS) methods. Access to detailed flow physics is attractive to industry, especially in an environment in which computer modelling is bound to play an ever increasing role. However, the improvement in accuracy and flow detail has substantial cost. This has so far prevented wider industrial use of LES. The purpose of the applied LES discussion meeting was to address questions regarding what is achievable and what is not,
APA, Harvard, Vancouver, ISO, and other styles
3

Tao, L., K. R. Rajagopal, and G. Q. Chen. "Discrete large eddy simulation." Communications in Nonlinear Science and Numerical Simulation 6, no. 1 (2001): 17–22. http://dx.doi.org/10.1016/s1007-5704(01)90023-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hauser, A., and G. Wittum. "Adaptive large eddy simulation." Computing and Visualization in Science 17, no. 6 (2015): 295–304. http://dx.doi.org/10.1007/s00791-016-0265-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Torner, Benjamin, Lucas Konnigk, Sebastian Hallier, Jitendra Kumar, Matthias Witte, and Frank-Hendrik Wurm. "Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier–Stokes simulation." International Journal of Artificial Organs 41, no. 11 (2018): 752–63. http://dx.doi.org/10.1177/0391398818777697.

Full text
Abstract:
Purpose: Numerical flow analysis (computational fluid dynamics) in combination with the prediction of blood damage is an important procedure to investigate the hemocompatibility of a blood pump, since blood trauma due to shear stresses remains a problem in these devices. Today, the numerical damage prediction is conducted using unsteady Reynolds-averaged Navier–Stokes simulations. Investigations with large eddy simulations are rarely being performed for blood pumps. Hence, the aim of the study is to examine the viscous shear stresses of a large eddy simulation in a blood pump and compare the r
APA, Harvard, Vancouver, ISO, and other styles
6

Jun, Sangook, Young Seok Kang, and Dong-Ho Rhee. "Application of Large Eddy Simulation to Turbine Nozzle with Film Cooling Holes." KSFM Journal of Fluid Machinery 23, no. 4 (2020): 5–11. http://dx.doi.org/10.5293/kfma.2020.23.4.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chlond, Andreas. "Large-Eddy Simulation of Contrails." Journal of the Atmospheric Sciences 55, no. 5 (1998): 796–819. http://dx.doi.org/10.1175/1520-0469(1998)055<0796:lesoc>2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Uijttewaal, Wim. "Large-eddy simulation in hydraulics." Journal of Hydraulic Research 52, no. 1 (2014): 155–56. http://dx.doi.org/10.1080/00221686.2014.884512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, G. Q., L. Tao, and K. R. Rajagopal. "Remarks on large eddy simulation." Communications in Nonlinear Science and Numerical Simulation 5, no. 3 (2000): 85–90. http://dx.doi.org/10.1016/s1007-5704(00)90007-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Knaepen, Bernard, Olivier Debliquy, and Daniele Carati. "Large-eddy simulation without filter." Journal of Computational Physics 205, no. 1 (2005): 98–107. http://dx.doi.org/10.1016/j.jcp.2004.10.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Iliescu, Traian, and Paul F. Fischer. "Large eddy simulation of turbulent channel flows by the rational large eddy simulation model." Physics of Fluids 15, no. 10 (2003): 3036. http://dx.doi.org/10.1063/1.1604781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Tatsuya, Yasuda, Kawahara Genta, and Goto Susumu. "1184 Large-eddy simulation of turbulent hyperbolic-stagnation-point flow." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2013.4 (2013): _1184–1_—_1184–5_. http://dx.doi.org/10.1299/jsmeicjwsf.2013.4._1184-1_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Mayer, Gusztav. "ICONE15-10592 LARGE EDDY SIMULATION OF A FUEL ROD SUBCHANNEL." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2007.15 (2007): _ICONE1510. http://dx.doi.org/10.1299/jsmeicone.2007.15._icone1510_319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

de Roode, Stephan R., Peter G. Duynkerke, and Harm J. J. Jonker. "Large-Eddy Simulation: How Large is Large Enough?" Journal of the Atmospheric Sciences 61, no. 4 (2004): 403–21. http://dx.doi.org/10.1175/1520-0469(2004)061<0403:lshlil>2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Delgadillo, Jose A., and Raj K. Rajamani. "Large-Eddy Simulation (LES) of Large Hydrocyclones." Particulate Science and Technology 25, no. 3 (2007): 227–45. http://dx.doi.org/10.1080/02726350701375774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Liu, Hao, Wen Yan Song, and Shun Hua Yang. "Large Eddy Simulation of Hydrogen-Fueled Supersonic Combustion with Strut Injection." Applied Mechanics and Materials 66-68 (July 2011): 1769–73. http://dx.doi.org/10.4028/www.scientific.net/amm.66-68.1769.

Full text
Abstract:
In order to obtain more accurate simulation results and properties of combustion in supersonic combustion flow fields, modules of large eddy simulation of reactive turbulent flow and fifth-order WENO scheme was developed. Large eddy simulation of hydrogen-fueled supersonic combustion with strut injection was conducted. Simulations results compare were with experimental measurements, which including wall pressure, velocity, velocity fluctuation and temperature.
APA, Harvard, Vancouver, ISO, and other styles
17

Bryan, George H., Nathan A. Dahl, David S. Nolan, and Richard Rotunno. "An Eddy Injection Method for Large-Eddy Simulations of Tornado-Like Vortices." Monthly Weather Review 145, no. 5 (2017): 1937–61. http://dx.doi.org/10.1175/mwr-d-16-0339.1.

Full text
Abstract:
Abstract The structure and intensity of tornado-like vortices are examined using large-eddy simulations (LES) in an idealized framework. The analysis focuses on whether the simulated boundary layer contains resolved turbulent eddies, and whether most of the vertical component of turbulent momentum flux is resolved rather than parameterized. Initial conditions are first generated numerically using a “precursor simulation” with an axisymmetric model. A three-dimensional “baseline” LES is then integrated using these initial conditions plus random perturbations. With this baseline approach, the in
APA, Harvard, Vancouver, ISO, and other styles
18

Lee, Du Han. "Analysis of Compound Open Channel Flow Using Large Eddy Simulation (LES)." Ecology and Resilient Infrastructure 4, no. 1 (2017): 54–62. http://dx.doi.org/10.17820/eri.2017.4.1.054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Anabor, V., U. Rizza, E. L. Nascimento, and G. A. Degrazia. "Large-Eddy Simulation of a microburst." Atmospheric Chemistry and Physics 11, no. 17 (2011): 9323–31. http://dx.doi.org/10.5194/acp-11-9323-2011.

Full text
Abstract:
Abstract. The three-dimensional structure and evolution of an isolated and stationary microburst are simulated using a time-dependent, high resolution Large-Eddy-Simulation (LES) model. The microburst is initiated by specifying a simplified cooling source at the top of the domain around 2 km a.g.l. that leads to a strong downdraft. Surface winds of the order of 30 m s−1 were obtained over a region of 500 m radius around the central point of the impinging downdraft, with the simulated microburst lasting for a few minutes. These characteristic length and time scales are consistent with results o
APA, Harvard, Vancouver, ISO, and other styles
20

Kim, Jungwoo, and Haecheon Choi. "Large Eddy Simulation of a Free Circular Jet up to Re=100,000(Numerical Simulation)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 721–24. http://dx.doi.org/10.1299/jsmeicjwsf.2005.721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Renard, Nicolas, and Sébastien Deck. "Improvements in Zonal Detached Eddy Simulation for Wall Modeled Large Eddy Simulation." AIAA Journal 53, no. 11 (2015): 3499–504. http://dx.doi.org/10.2514/1.j054143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Roberts, Stephen K., and Metin I. Yaras. "Large-Eddy Simulation of Transition in a Separation Bubble." Journal of Fluids Engineering 128, no. 2 (2005): 232–38. http://dx.doi.org/10.1115/1.2170123.

Full text
Abstract:
In this paper, large-eddy simulation of the transition process in a separation bubble is compared to experimental results. The measurements and simulations are conducted under low freestream turbulence conditions over a flat plate with a streamwise pressure distribution typical of those encountered on the suction side of turbine airfoils. The computational grid is refined to the extent that the simulation qualifies as a “coarse” direct numerical simulation. The simulations are shown to accurately capture the transition process in the separated shear layer. The results of these simulations are
APA, Harvard, Vancouver, ISO, and other styles
23

Raasch, Siegfried, and Michael Schröter. "PALM - A large-eddy simulation model performing on massively parallel computers." Meteorologische Zeitschrift 10, no. 5 (2001): 363–72. http://dx.doi.org/10.1127/0941-2948/2001/0010-0363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Moser, Robert D., Nicholas P. Malaya, Henry Chang, et al. "Theoretically based optimal large-eddy simulation." Physics of Fluids 21, no. 10 (2009): 105104. http://dx.doi.org/10.1063/1.3249754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Vuorinen, Ville, Armin Wehrfritz, Jingzhou Yu, Ossi Kaario, Martti Larmi, and Bendiks Jan Boersma. "Large-Eddy Simulation of Subsonic Jets." Journal of Physics: Conference Series 318, no. 3 (2011): 032052. http://dx.doi.org/10.1088/1742-6596/318/3/032052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Skyllingstad, Eric D. "Large-Eddy Simulation of Katabatic Flows." Boundary-Layer Meteorology 106, no. 2 (2003): 217–43. http://dx.doi.org/10.1023/a:1021142828676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Geurts, Bernard J. "Inverse modeling for large-eddy simulation." Physics of Fluids 9, no. 12 (1997): 3585–87. http://dx.doi.org/10.1063/1.869495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

MAKIHARA, Takafumi, and Takahiko TANAHASHI. "Large Eddy Simulation by GSMAC-FEM." Proceedings of the Fluids engineering conference 2000 (2000): 256. http://dx.doi.org/10.1299/jsmefed.2000.256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Patton, Edward G., Roger H. Shaw, Murray J. Judd, and Michael R. Raupach. "Large-Eddy Simulation of Windbreak Flow." Boundary-Layer Meteorology 87, no. 2 (1998): 275–307. http://dx.doi.org/10.1023/a:1000945626163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Nakanishi, Mikio. "Large-Eddy Simulation Of Radiation Fog." Boundary-Layer Meteorology 94, no. 3 (2000): 461–93. http://dx.doi.org/10.1023/a:1002490423389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Quillatre, Pierre, Olivier Vermorel, Thierry Poinsot, and Philippe Ricoux. "Large Eddy Simulation of Vented Deflagration." Industrial & Engineering Chemistry Research 52, no. 33 (2013): 11414–23. http://dx.doi.org/10.1021/ie303452p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Piomelli, U. "Large-eddy simulation: achievements and challenges." Progress in Aerospace Sciences 35, no. 4 (1999): 335–62. http://dx.doi.org/10.1016/s0376-0421(98)00014-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Christensen, Erik Damgaard, and Rolf Deigaard. "Large eddy simulation of breaking waves." Coastal Engineering 42, no. 1 (2001): 53–86. http://dx.doi.org/10.1016/s0378-3839(00)00049-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wang, Yi, Prateep Chatterjee, and John L. de Ris. "Large eddy simulation of fire plumes." Proceedings of the Combustion Institute 33, no. 2 (2011): 2473–80. http://dx.doi.org/10.1016/j.proci.2010.07.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Scotti, Alberto. "Large eddy simulation in the ocean." International Journal of Computational Fluid Dynamics 24, no. 10 (2010): 393–406. http://dx.doi.org/10.1080/10618562.2010.522527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Trouvé, Arnaud, and Yi Wang. "Large eddy simulation of compartment fires." International Journal of Computational Fluid Dynamics 24, no. 10 (2010): 449–66. http://dx.doi.org/10.1080/10618562.2010.541393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Rajagopal, K. R., L. Tao, and Guoqian Chen. "A formulation on large eddy simulation." Communications in Nonlinear Science and Numerical Simulation 4, no. 4 (1999): 245–48. http://dx.doi.org/10.1016/s1007-5704(99)90034-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Müller, Wolf-Christian, and Daniele Carati. "Large-eddy simulation of magnetohydrodynamic turbulence." Computer Physics Communications 147, no. 1-2 (2002): 544–47. http://dx.doi.org/10.1016/s0010-4655(02)00341-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Möller, S. I., E. Lundgren, and C. Fureby. "Large eddy simulation of unsteady combustion." Symposium (International) on Combustion 26, no. 1 (1996): 241–48. http://dx.doi.org/10.1016/s0082-0784(96)80222-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ding, Yan-ming, Chang-jian Wang, and Shou-xiang Lu. "Large Eddy Simulation of Fire Spread." Procedia Engineering 71 (2014): 537–43. http://dx.doi.org/10.1016/j.proeng.2014.04.077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Yang, W. B., H. Q. Zhang, C. K. Chan, and W. Y. Lin. "Large eddy simulation of mixing layer." Journal of Computational and Applied Mathematics 163, no. 1 (2004): 311–18. http://dx.doi.org/10.1016/j.cam.2003.08.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kobayashi, Toshio. "Large Eddy simulation for engineering applications." Fluid Dynamics Research 38, no. 2-3 (2006): 84–107. http://dx.doi.org/10.1016/j.fluiddyn.2005.06.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Tominaga, T., Y. Itoh, M. Hirohata, T. Kobayashi, and N. Taniguchi. "Large eddy simulation of turbulent flame." Journal of Visualization 5, no. 4 (2002): 314. http://dx.doi.org/10.1007/bf03182343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Boris, J. P., F. F. Grinstein, E. S. Oran, and R. L. Kolbe. "New insights into large eddy simulation." Fluid Dynamics Research 10, no. 4-6 (1992): 199–228. http://dx.doi.org/10.1016/0169-5983(92)90023-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Pitsch, Heinz. "LARGE-EDDY SIMULATION OF TURBULENT COMBUSTION." Annual Review of Fluid Mechanics 38, no. 1 (2006): 453–82. http://dx.doi.org/10.1146/annurev.fluid.38.050304.092133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Stevens, Bjorn, and Donald H. Lenschow. "Observations, Experiments, and Large Eddy Simulation." Bulletin of the American Meteorological Society 82, no. 2 (2001): 283–94. http://dx.doi.org/10.1175/1520-0477(2001)082<0283:oeales>2.3.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Geurts, Bernard J., and Darryl D. Holm. "Commutator errors in large-eddy simulation." Journal of Physics A: Mathematical and General 39, no. 9 (2006): 2213–29. http://dx.doi.org/10.1088/0305-4470/39/9/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Geurts, Bernard J., and Darryl D. Holm. "Regularization modeling for large-eddy simulation." Physics of Fluids 15, no. 1 (2003): L13—L16. http://dx.doi.org/10.1063/1.1529180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Schmitt, T., L. Selle, B. Cuenot, and T. Poinsot. "Large-Eddy Simulation of transcritical flows." Comptes Rendus Mécanique 337, no. 6-7 (2009): 528–38. http://dx.doi.org/10.1016/j.crme.2009.06.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Sengupta, T. K., and Manoj T. Nair. "Upwind schemes and large eddy simulation." International Journal for Numerical Methods in Fluids 31, no. 5 (1999): 879–89. http://dx.doi.org/10.1002/(sici)1097-0363(19991115)31:5<879::aid-fld903>3.0.co;2-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!