Academic literature on the topic 'Large Scale Probleme'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Large Scale Probleme.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Large Scale Probleme"
Ahrens, Gerd-Axel, Klaus J. Beckmann, Manfred Boltze, Alexander Eisenkopf, Hartmut Fricke, Günther Knieps, Andreas Knorr, et al. "Auswahl und Abwicklung von Großprojekten/Selection and Execution of large-scale projects." Bauingenieur 90, no. 03 (2015): 129–39. http://dx.doi.org/10.37544/0005-6650-2015-03-63.
Full textP.Sumathi, P. Sumathi, and A. Gangadharan A.Gangadharan. "New Technique to DetectRedundant Constraints in Large Scale Linear Programming Problems." International Journal of Scientific Research 3, no. 6 (June 1, 2012): 236–38. http://dx.doi.org/10.15373/22778179/june2014/77.
Full textMUKADDES, A. M. M., Masao OGINO, Ryuji SHIOYA, and Hiroshi KANAYAMA. "704 A Scalable Balancing Domain Decomposition Based Preconditioner for Large Scale Thermal-Solid Coupling Problems." Proceedings of The Computational Mechanics Conference 2005.18 (2005): 523–24. http://dx.doi.org/10.1299/jsmecmd.2005.18.523.
Full textMazhar, Hammad, Dan Negrut, Arman Pazouki, and Alessandro Tasora. "59079 A SCALABLE PARALLEL METHOD FOR LARGE SCALE COLLISION DETECTION PROBLEMS(Contact, Impact, and Friction)." Proceedings of the Asian Conference on Multibody Dynamics 2010.5 (2010): _59079–1_—_59079–12_. http://dx.doi.org/10.1299/jsmeacmd.2010.5._59079-1_.
Full textVakhnin, A. V., E. A. Sopov, I. A. Panfilov, A. S. Polyakova, and D. V. Kustov. "A problem decomposition approach for large-scale global optimization problems." IOP Conference Series: Materials Science and Engineering 537 (June 18, 2019): 052031. http://dx.doi.org/10.1088/1757-899x/537/5/052031.
Full textCONLON, JOSEPH P. "HIERARCHY PROBLEMS IN STRING THEORY AND LARGE VOLUME MODELS." Modern Physics Letters A 23, no. 01 (January 10, 2008): 1–16. http://dx.doi.org/10.1142/s0217732308025930.
Full textBanihashemi, Mohamadreza, and Ali Haghani. "Optimization Model for Large-Scale Bus Transit Scheduling Problems." Transportation Research Record: Journal of the Transportation Research Board 1733, no. 1 (January 2000): 23–30. http://dx.doi.org/10.3141/1733-04.
Full textBredereck, Robert, Piotr Faliszewski, Rolf Niedermeier, and Nimrod Talmon. "Large-Scale Election Campaigns: Combinatorial Shift Bribery." Journal of Artificial Intelligence Research 55 (March 16, 2016): 603–52. http://dx.doi.org/10.1613/jair.4927.
Full textGratch, J., and S. Chien. "Adaptive Problem-solving for Large-scale Scheduling Problems: A Case Study." Journal of Artificial Intelligence Research 4 (May 1, 1996): 365–96. http://dx.doi.org/10.1613/jair.177.
Full textJagers, Sverker C., Niklas Harring, Åsa Löfgren, Martin Sjöstedt, Francisco Alpizar, Bengt Brülde, David Langlet, et al. "On the preconditions for large-scale collective action." Ambio 49, no. 7 (November 12, 2019): 1282–96. http://dx.doi.org/10.1007/s13280-019-01284-w.
Full textDissertations / Theses on the topic "Large Scale Probleme"
Falter, Daniela [Verfasser], and Bruno [Akademischer Betreuer] Merz. "A novel approach for large-scale flood risk assessments : continuous and long-term simulation of the full flood risk chain / Daniela Falter ; Betreuer: Bruno Merz." Potsdam : Universität Potsdam, 2016. http://d-nb.info/1218400412/34.
Full textBrunner, Carl. "Pairwise Classification and Pairwise Support Vector Machines." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-87820.
Full textEs gibt verschiedene Ansätze, um binäre Klassifikatoren zur Mehrklassenklassifikation zu nutzen, zum Beispiel die One Against All Technik, die One Against One Technik oder Directed Acyclic Graphs. Paarweise Klassifikation ist ein neuerer Ansatz zur Mehrklassenklassifikation. Dieser Ansatz basiert auf der Verwendung von zwei Input Examples anstelle von einem und bestimmt, ob diese beiden Examples zur gleichen Klasse oder zu unterschiedlichen Klassen gehören. Eine Support Vector Machine (SVM), die für paarweise Klassifikationsaufgaben genutzt wird, heißt paarweise SVM. Beispielsweise werden Probleme der Gesichtserkennung als paarweise Klassifikationsaufgabe gestellt. Dazu nutzt man eine Menge von Bildern zum Training und ein andere Menge von Bildern zum Testen. Häufig ist man dabei an der Interclass Generalization interessiert. Das bedeutet, dass jede Person, die auf wenigstens einem Bild der Trainingsmenge dargestellt ist, auf keinem Bild der Testmenge vorkommt. Von allen erwähnten Mehrklassenklassifikationstechniken liefert nur die paarweise Klassifikationstechnik sinnvolle Ergebnisse für die Interclass Generalization. Die Entscheidung eines paarweisen Klassifikators sollte nicht von der Reihenfolge der zwei Input Examples abhängen. Diese Symmetrie wird häufig durch die Verwendung spezieller Kerne gesichert. Es werden Beziehungen zwischen solchen Kernen und bestimmten Projektionen hergeleitet. Zudem wird gezeigt, dass diese Projektionen zu einem Informationsverlust führen können. Für paarweise SVMs ist die Symmetrisierung der Trainingsmengen ein weiter Ansatz zur Sicherung der Symmetrie. Das bedeutet, wenn das Paar (a,b) von Input Examples zur Trainingsmenge gehört, dann muss das Paar (b,a) ebenfalls zur Trainingsmenge gehören. Es wird bewiesen, dass für bestimmte Parameter beide Ansätze zur gleichen Entscheidungsfunktion führen. Empirische Messungen zeigen, dass der Ansatz mittels spezieller Kerne drei bis viermal schneller ist. Um eine gute Interclass Generalization zu erreichen, werden bei paarweisen SVMs Trainingsmengen mit mehreren Millionen Paaren benötigt. Es wird eine Technik eingeführt, die die Trainingszeit von paarweisen SVMs um bis zum 130-fachen beschleunigt und es somit ermöglicht, Trainingsmengen mit mehreren Millionen Paaren zu verwenden. Auch die Auswahl guter Parameter für paarweise SVMs ist im Allgemeinen sehr zeitaufwendig. Selbst mit den beschriebenen Beschleunigungen ist eine Gittersuche in der Menge der Parameter sehr teuer. Daher wird eine Model Selection Technik eingeführt, die deutlich geringeren Aufwand erfordert. Im maschinellen Lernen werden die Trainingsmenge und die Testmenge von einem Datengenerierungsprozess erzeugt. Ausgehend von einem nicht paarweisen Datengenerierungsprozess werden unterschiedliche paarweise Datengenerierungsprozesse abgeleitet und ihre Vor- und Nachteile bewertet. Es werden paarweise Bayes-Klassifikatoren eingeführt und ihre Eigenschaften diskutiert. Es wird gezeigt, dass sich diese Bayes-Klassifikatoren für Interclass Generalization Aufgaben und für Interexample Generalization Aufgaben im Allgemeinen unterscheiden. Bei der Gesichtserkennung bedeutet die Interexample Generalization, dass jede Person, die auf einem Bild der Testmenge dargestellt ist, auch auf mindestens einem Bild der Trainingsmenge vorkommt. Außerdem ist der Durchschnitt der Menge der Bilder der Trainingsmenge mit der Menge der Bilder der Testmenge leer. Paarweise SVMs werden an vier synthetischen und an zwei Real World Datenbanken getestet. Eine der verwendeten Real World Datenbanken ist die Labeled Faces in the Wild (LFW) Datenbank. Die andere wurde von Cognitec Systems GmbH bereitgestellt. Die Annahmen der Model Selection Technik, die Diskussion über den Informationsverlust, sowie die präsentierten Beschleunigungstechniken werden durch empirische Messungen mit den synthetischen Datenbanken belegt. Zudem wird mittels dieser Datenbanken gezeigt, dass Klassifikatoren von paarweisen SVMs zu ähnlich guten Ergebnissen wie paarweise Bayes-Klassifikatoren führen. Für die LFW Datenbank wird ein paarweiser Klassifikator bestimmt, der zu einer durchschnittlichen Equal Error Rate (EER) von 0.0947 und einem Standard Error of The Mean (SEM) von 0.0057 führt. Dieses Ergebnis ist besser als das des aktuellen State of the Art Klassifikators, dem Combined Probabilistic Linear Discriminant Analysis Klassifikator. Dieser führt zu einer durchschnittlichen EER von 0.0993 und einem SEM von 0.0051
Brinkel, Johanna [Verfasser]. "A user-centred evaluation of a mobile phone-based interactive voice response system to support infectious disease surveillance and access to healthcare for sick children in Ghana: users’ experiences, challenges and opportunities for large-scale application. Part of a concept and pilot study for mobile phone-based Electronic Health Information and Surveillance System (eHISS) for Africa / Johanna Brinkel." Bielefeld : Universitätsbibliothek Bielefeld, 2020. http://d-nb.info/1204561826/34.
Full textTran, Van-Hoai. "Solving large scale crew pairing problems." [S.l. : s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975292714.
Full textGrigoleit, Mark Ted. "Optimisation of large scale network problems." Curtin University of Technology, Department of Mathematics and Statistics, 2008. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=115092.
Full textWe then use this information to constrain the network along a bisecting meridian. The combination of Lagrange Relaxation (LR) and a heuristic for filtering along the meridian provide an aggressive method for finding near-optimal solutions in a short time. Two network problems are studied in this work. The first is a Submarine Transit Path problem in which the transit field contains four sonar detectors at known locations, each with the same detection profile. The side constraint is the total transit time, with the submarine capable of 2 speeds. For the single-speed case, the initial LR duality gap may be as high as 30%. The first hybrid method uses a single centre meridian to constrain the network based on the unused time resource, and is able to produce solutions that are generally within 1% of optimal and always below 3%. Using the computation time for the initial Lagrange Relaxation as a baseline, the average computation time for the first hybrid method is about 30% to 50% higher, and the worst case CPU times are 2 to 4 times higher. The second problem is a random valued network from the literature. Edge costs, times, and lengths are uniform, randomly generated integers in a given range. Since the values given in the literature problems do not yield problems with a high duality gap, the values are varied and from a population of approximately 100,000 problems only the worst 200 from each set are chosen for study. These problems have an initial LR duality gap as high as 40%. A second hybrid method is developed, using values for the unused time resource and the lower bound values computed by Dijkstra’s algorithm as part of the LR method. The computed values are then used to position multiple constraining meridians in order to allow LR to find better solutions.
This second hybrid method is able to produce solutions that are generally within 0.1% of optimal, with computation times that are on average 2 times the initial Lagrange Relaxation time, and in the worst case only about 5 times higher. The best method for solving the Constrained Shortest Path Problem reported in the literature thus far is the LRE-A method of Carlyle et al. (2007), which uses Lagrange Relaxation for preprocessing followed by a bounded search using aggregate constraints. We replace Lagrange Relaxation with the second hybrid method and show that optimal solutions are produced for both network problems with computation times that are between one and two orders of magnitude faster than LRE-A. In addition, these hybrid methods combined with the bounded search are up to 2 orders of magnitude faster than the commercial CPlex package using a straightforward MILP formulation of the problem. Finally, the second hybrid method is used as a preprocessing step on both network problems, prior to running CPlex. This preprocessing reduces the network size sufficiently to allow CPlex to solve all cases to optimality up to 3 orders of magnitude faster than without this preprocessing, and up to an order of magnitude faster than using Lagrange Relaxation for preprocessing. Chapter 1 provides a review of the thesis and some terminology used. Chapter 2 reviews previous approaches to the CSPP, in particular the two current best methods. Chapter 3 applies Lagrange Relaxation to the Submarine Transit Path problem with 2 speeds, to provide a baseline for comparison. The problem is reduced to a single speed, which demonstrates the large duality gap problem possible with Lagrange Relaxation, and the first hybrid method is introduced.
Chapter 4 examines a grid network problem using randomly generated edge costs and weights, and introduces the second hybrid method. Chapter 5 then applies the second hybrid method to both network problems as a preprocessing step, using both CPlex and a bounded search method from the literature to solve to optimality. The conclusion of this thesis and directions for future work are discussed in Chapter 6.
Shim, Sangho. "Large scale group network optimization." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31737.
Full textCommittee Chair: Ellis L. Johnson; Committee Member: Brady Hunsaker; Committee Member: George Nemhauser; Committee Member: Jozef Siran; Committee Member: Shabbir Ahmed; Committee Member: William Cook. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Bulin, Johannes. "Large-scale time parallelization for molecular dynamics problems." Thesis, KTH, Numerisk analys, NA, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-129301.
Full textModerna superdatorer använder ett stort antal processorer för att uppnå hög prestanda. Därför är det nödvändigt att parallellisera sina program på ett effektivt sätt. När man löser differentialekvationer så brukar man parallellisera beräkningen av en enda tidspunkt. Speedupen av sådana program är ofta begränsad, till exempel av problemets storlek. Genom att använda ytterligare parallellisering i tid kan man uppnå bättre skalbarhet. Denna avhandling presenterar två välkända algoritmer för tidsparallellisering: waveform relaxation och parareal. Dessa metoder används för att lösa ett molekyldynamikproblem där tidsdomänen är stor jämförd med antalet obekanta. Slutligen undersöks några förbättringar för att möjliggöra storskaliga beräkningar.
Bacarella, Daniele. "Distributed clustering algorithm for large scale clustering problems." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-212089.
Full textFutamura, Natsuhiko. "Algorithms for large-scale problems in computational biology." Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2002. http://wwwlib.umi.com/cr/syr/main.
Full textSohrabi, Babak. "Solving large scale distribution problems using heuristic algorithms." Thesis, Lancaster University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369654.
Full textBooks on the topic "Large Scale Probleme"
Fathi, Mahdi, Marzieh Khakifirooz, and Panos M. Pardalos, eds. Optimization in Large Scale Problems. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28565-4.
Full textTsurkov, Vladimir. Large-scale Optimization - Problems and Methods. Boston, MA: Springer US, 2001.
Find full textLarge-scale optimization: Problems and methods. Dordrecht: Kluwer Academic Publishers, 2001.
Find full textBeilina, Larisa, and Yury V. Shestopalov, eds. Inverse Problems and Large-Scale Computations. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00660-4.
Full textTsurkov, Vladimir. Large-scale Optimization — Problems and Methods. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3243-6.
Full textSpohn, Herbert. Large scale dynamics ofinteracting particles. Berlin: Springer-Verlag, 1991.
Find full textSmith, Peter. Large scale models and large scale problems: The case of the health services. York: York University, Centre for Health Economics, 1993.
Find full textSmith, Peter. Large scale models and large scale problems: The case of the health services. York: Centre for Health Economics, University of York, 1993.
Find full textStephen, Tindale, ed. Repowering communities: Small-scale solutions for large-scale energy problems. London: Earthscan, 2011.
Find full textRidyard, Beverley. Problems of a large-scale legacy system. Manchester: UMIST, 1997.
Find full textBook chapters on the topic "Large Scale Probleme"
Lee, Yusin, and James B. Orlin. "On Very Large Scale Assignment Problems." In Large Scale Optimization, 206–44. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4613-3632-7_12.
Full textBanagaaya, N., G. Alì, and W. H. A. Schilders. "Large Scale Problems." In Atlantis Studies in Scientific Computing in Electromagnetics, 71–82. Paris: Atlantis Press, 2016. http://dx.doi.org/10.2991/978-94-6239-189-5_5.
Full textAllower, Eugene L., and Kurt Georg. "Large Scale Problems." In Numerical Continuation Methods, 96–111. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-61257-2_10.
Full textChossat, Pascal, and Gérard Iooss. "Large-scale Effects." In The Couette-Taylor Problem, 167–205. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-4300-7_7.
Full textKohut, Roman, Jiří Starý, Radim Blaheta, and Karel Krečmer. "Parallel Computing of Thermoelasticity Problems." In Large-Scale Scientific Computing, 671–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11666806_77.
Full textTzaferopoulos, M. Ap, E. S. Mistakidis, C. D. Bisbos, and P. D. Panagiotopoulos. "On Two Algorithms for Nonconvex Nonsmooth Optimization Problems in Structural Mechanics." In Large Scale Optimization, 428–56. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4613-3632-7_21.
Full textMaranas, Costas D., and Christodoulos A. Floudas. "A Global Optimization Method For Weber’s Problem With Attraction And Repulsion." In Large Scale Optimization, 259–85. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4613-3632-7_14.
Full textPoore, Aubrey B., and Nenad Rijavec. "A Numerical Study of Some Data Association Problems Arising in Multitarget Tracking." In Large Scale Optimization, 339–61. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4613-3632-7_17.
Full textSpielberg, Kurt, and Uwe H. Suhl. "Solving Large-Scale Integer Optimization Problems." In Large Scale Scientific Computing, 271–86. Boston, MA: Birkhäuser Boston, 1987. http://dx.doi.org/10.1007/978-1-4684-6754-3_17.
Full textFidanova, Stefka, and Mariya Durchova. "Ant Algorithm for Grid Scheduling Problem." In Large-Scale Scientific Computing, 405–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11666806_46.
Full textConference papers on the topic "Large Scale Probleme"
Iyer, Chander, Christopher Carothers, and Petros Drineas. "Randomized Sketching for Large-Scale Sparse Ridge Regression Problems." In 2016 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA). IEEE, 2016. http://dx.doi.org/10.1109/scala.2016.013.
Full textLing, Andrew C., Deshanand P. Singh, and Stephen D. Brown. "Incremental placement for structured ASICs using the transportation problem." In 2007 IFIP International Conference on Very Large Scale Integration. IEEE, 2007. http://dx.doi.org/10.1109/vlsisoc.2007.4402493.
Full textZubair, Mohammad, James Warner, and David Wagner. "Optimization of a Solver for Computational Materials and Structures Problems on NVIDIA Volta and AMD Instinct GPUs." In 2019 IEEE/ACM 10th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA). IEEE, 2019. http://dx.doi.org/10.1109/scala49573.2019.00007.
Full textEvgeny, R. Gafarov, Al Lazarev Aleksandr, and V. Zinovyev Aleksandr. "Algorithms for workforce assignment problem." In 2017 Tenth International Conference Management of Large-Scale System Development (MLSD). IEEE, 2017. http://dx.doi.org/10.1109/mlsd.2017.8109621.
Full textIvanyuk, Vera, and Vladimir Soloviev. "Efficiency of Neural Networks in Forecasting Problems." In 2019 Twelfth International Conference "Management of large-scale system development" (MLSD). IEEE, 2019. http://dx.doi.org/10.1109/mlsd.2019.8911046.
Full textAkinfiev, Valery. "Dynamic Capacity Expansion Problem in Competitive Markets." In 2019 Twelfth International Conference "Management of large-scale system development" (MLSD). IEEE, 2019. http://dx.doi.org/10.1109/mlsd.2019.8911107.
Full textSavushkin, S. A. "Problems of Scenario Modeling of the Transport Complex." In 2020 13th International Conference Management of large-scale system development (MLSD). IEEE, 2020. http://dx.doi.org/10.1109/mlsd49919.2020.9247713.
Full textIvanyuk, Vera, and Niyaz Abdikeev. "Practical Application of Neural Networks in Classification Problems." In 2020 13th International Conference Management of large-scale system development (MLSD). IEEE, 2020. http://dx.doi.org/10.1109/mlsd49919.2020.9247776.
Full textGorelik, Victor, and Tatiana Zolotova. "Risk Management in Stochastic Problems of Stock Investment." In 2020 13th International Conference Management of large-scale system development (MLSD). IEEE, 2020. http://dx.doi.org/10.1109/mlsd49919.2020.9247801.
Full textBurkov, V. N., N. A. Korgin, and V. A. Sergeev. "Identification of Integrated Rating Mechanisms as Optimization Problem." In 2020 13th International Conference Management of large-scale system development (MLSD). IEEE, 2020. http://dx.doi.org/10.1109/mlsd49919.2020.9247638.
Full textReports on the topic "Large Scale Probleme"
GEORGE MASON UNIV FAIRFAX VA. Solving Large-Scale Combinatorial Optimization Problems. Fort Belvoir, VA: Defense Technical Information Center, August 1996. http://dx.doi.org/10.21236/ada327597.
Full textcoleman, thomas f. Large Scale Computational Problems in Numerical Optimization. Office of Scientific and Technical Information (OSTI), July 2000. http://dx.doi.org/10.2172/1087647.
Full textBondarenko, A. S., D. M. Bortz, and J. J. More. COPS: Large-scale nonlinearly constrained optimization problems. Office of Scientific and Technical Information (OSTI), February 2000. http://dx.doi.org/10.2172/751934.
Full textPenfield, Jr, Agarwal Paul, Dally Anant, Devadas William J., Knight Srinivas, Thomas F. Jr, F. T. Leighton, et al. Critical Problems in Very Large Scale Computer Systems. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada202129.
Full textMunson, Todd S., Francisco Facchinei, Michael C. Ferris, Andreas Fischer, and Christian Kanzow. The Semismooth Algorithm for Large Scale Complementarity Problems. Fort Belvoir, VA: Defense Technical Information Center, June 1999. http://dx.doi.org/10.21236/ada375452.
Full textCarin, Lawrence. Fast Electromagnetic Solvers for Large-Scale Naval Scattering Problems. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada486567.
Full textFinn, Gregory G. Routing and Addressing Problems in Large Metropolitan-Scale Internetworks. Fort Belvoir, VA: Defense Technical Information Center, March 1987. http://dx.doi.org/10.21236/ada180187.
Full textZhaojun Bai, James Demmel, and Jack Dongarra. Toolboxes and Templates for Large Scale Linear Algebra Problems. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/841936.
Full textSchnabel, Robert B., and Richard H. Byrd. Large Scale Optimization Methods with a Focus on Chemistry Problems. Fort Belvoir, VA: Defense Technical Information Center, November 2002. http://dx.doi.org/10.21236/ada418451.
Full textPee, E. Y., and J. O. Royset. On Solving Large-Scale Finite Minimax Problems using Exponential Smoothing. Fort Belvoir, VA: Defense Technical Information Center, January 2010. http://dx.doi.org/10.21236/ada518716.
Full text