To see the other types of publications on this topic, follow the link: Laser cooling of atoms.

Journal articles on the topic 'Laser cooling of atoms'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Laser cooling of atoms.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Baker, C. J., W. Bertsche, A. Capra, et al. "Laser cooling of antihydrogen atoms." Nature 592, no. 7852 (2021): 35–42. http://dx.doi.org/10.1038/s41586-021-03289-6.

Full text
Abstract:
AbstractThe photon—the quantum excitation of the electromagnetic field—is massless but carries momentum. A photon can therefore exert a force on an object upon collision1. Slowing the translational motion of atoms and ions by application of such a force2,3, known as laser cooling, was first demonstrated 40 years ago4,5. It revolutionized atomic physics over the following decades6–8, and it is now a workhorse in many fields, including studies on quantum degenerate gases, quantum information, atomic clocks and tests of fundamental physics. However, this technique has not yet been applied to anti
APA, Harvard, Vancouver, ISO, and other styles
2

Xucheng Wang, Xucheng Wang, Huadong Cheng Huadong Cheng, Ling Xiao Ling Xiao, et al. "Laser cooling of rubidium 85 atoms in integrating sphere." Chinese Optics Letters 10, no. 8 (2012): 080201–80203. http://dx.doi.org/10.3788/col201210.080201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

HACHISU, Hidekazu. "Laser Cooling of Atoms." Journal of the Society of Mechanical Engineers 112, no. 1087 (2009): 482–83. http://dx.doi.org/10.1299/jsmemag.112.1087_482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sukachev, D., K. Chebakov, A. Sokolov, A. Akimov, N. Kolachevsky, and V. Sorokin. "Laser cooling of thulium atoms." Optics and Spectroscopy 111, no. 4 (2011): 633–38. http://dx.doi.org/10.1134/s0030400x11110282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Metcalf, H. "Laser cooling of neutral atoms." Optics News 15, no. 12 (1989): 32. http://dx.doi.org/10.1364/on.15.12.000032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chu, Steven. "Laser Cooling of Neutral Atoms." Optics and Photonics News 1, no. 12 (1990): 40. http://dx.doi.org/10.1364/opn.1.12.000040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Yu-Zhu, and Liang Liu. "Laser Manipulation of Atoms and Atom Optics." Australian Journal of Physics 48, no. 2 (1995): 267. http://dx.doi.org/10.1071/ph950267.

Full text
Abstract:
In this paper experiments on laser cooling, collimation and manipulation of a sodium atomic beam, such as the transverse collimation and decollimation of an atomic beam by a standing wave or a misaligned standing wave, longitudinal cooling of an atomic beam by a diffuse light field, sub-Doppler cooling in a blue detuned standing wave, are reported. The basic concept on atom optics is developed. An experiment on a method for the injection of atoms into an atomic cavity is also discussed.
APA, Harvard, Vancouver, ISO, and other styles
8

Zheng, Ben-Chang, Hua-Dong Cheng, Yan-Ling Meng, et al. "A large-scale cold atom source in an integrating sphere." Modern Physics Letters B 28, no. 14 (2014): 1450116. http://dx.doi.org/10.1142/s0217984914501164.

Full text
Abstract:
An integrating sphere with a diameter of 10 cm is developed for cooling atoms. The maximum number of 2 × 1010 cold atoms is obtained from a background vapor with 220 mW cooling laser power. The cold atom number can be increased by further increasing the cooling power. Such cold atom source would have potential use for Raman–Ramsey atomic clock with good signal-to-noise ratio (SNR).
APA, Harvard, Vancouver, ISO, and other styles
9

Peterson, I. "Laser Cooling: Putting Atoms on Ice." Science News 127, no. 12 (1985): 183. http://dx.doi.org/10.2307/3969567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cirac, J. I., M. Lewenstein, and P. Zoller. "Collective laser cooling of trapped atoms." Europhysics Letters (EPL) 35, no. 9 (1996): 647–52. http://dx.doi.org/10.1209/epl/i1996-00165-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

BJORKHOLM, J., S. CHU, A. CABLE, and A. ASHKIN. "Laser cooling and trapping of atoms." Optics News 12, no. 12 (1986): 18. http://dx.doi.org/10.1364/on.12.12.000018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Letokhov, V. S., M. A. Ol'shanii, and Yu B. Ovchinnikov. "Laser cooling of atoms: a review." Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 7, no. 1 (1995): 5–40. http://dx.doi.org/10.1088/1355-5111/7/1/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Phillips, W. D. "Laser-cooling and trapping neutral atoms." Annales de Physique 10, no. 6 (1985): 717–32. http://dx.doi.org/10.1051/anphys:01985001006071700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Meschede, Dieter. "Laser cooling the atom of atoms." Physics World 6, no. 6 (1993): 25–28. http://dx.doi.org/10.1088/2058-7058/6/6/19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Foot, C. J. "Laser cooling and trapping of atoms." Contemporary Physics 32, no. 6 (1991): 369–81. http://dx.doi.org/10.1080/00107519108223712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Metcalf, H. J., and P. van der Straten. "Laser cooling and trapping of atoms." Journal of the Optical Society of America B 20, no. 5 (2003): 887. http://dx.doi.org/10.1364/josab.20.000887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Allegrini, M., and E. Arimondo. "Pulsed laser cooling of hydrogen atoms." Physics Letters A 172, no. 4 (1993): 271–76. http://dx.doi.org/10.1016/0375-9601(93)91020-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Shen, Li Tuo, Xin Yu Chen, Zhen-Biao Yang, Huai-Zhi Wu, and Shi-Biao Zheng. "Cooling distant atoms into steady entanglement via coupled cavities." Quantum Information and Computation 13, no. 3&4 (2013): 281–89. http://dx.doi.org/10.26421/qic13.3-4-8.

Full text
Abstract:
We propose a scheme for generating steady-state entanglement between two distant atomic qubits in the coupled-cavity system via laser cooling. With suitable choice of the laser frequencies, the target entangled state is the only ground state that is not excited by the lasers due to large detunings. The laser excitations of other ground states, together with dissipative processes, drive the system to the target state which is the unique steady state of the system. Numerical simulation shows that the maximally entangled state with high fidelity can be produced with presently available cooperativ
APA, Harvard, Vancouver, ISO, and other styles
19

SHIMIZU, Kazuko. "Laser Cooling and Trapping of Neutral Atoms." SHINKU 38, no. 10 (1995): 847–53. http://dx.doi.org/10.3131/jvsj.38.847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Almuslet, Nafie, and Iman Elhaj. "Laser Cooling of Radium Atoms, Computational Investigation." Physical Science International Journal 16, no. 4 (2017): 1–8. http://dx.doi.org/10.9734/psij/2017/37726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Arimondo, E., D. Ciampini, F. Fuso, and C. Gabbanini. "Laser cooling and photoionization of alkali atoms." Applied Surface Science 154-155 (February 2000): 527–35. http://dx.doi.org/10.1016/s0169-4332(99)00459-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Shimizu, Fujio. "Laser cooling and trapping of neutral atoms." Hyperfine Interactions 74, no. 1-4 (1992): 259–67. http://dx.doi.org/10.1007/bf02398635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Adams, C. S., and E. Riis. "Laser cooling and trapping of neutral atoms." Progress in Quantum Electronics 21, no. 1 (1997): 1–79. http://dx.doi.org/10.1016/s0079-6727(96)00006-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Khabarova, K. Yu, S. N. Slyusarev, S. A. Strelkin, et al. "Laser system for secondary cooling of87Sr atoms." Quantum Electronics 42, no. 11 (2012): 1021–26. http://dx.doi.org/10.1070/qe2012v042n11abeh014989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ertmer, W. "Laser cooling and storage of free atoms." Physica Scripta 36, no. 2 (1987): 306–11. http://dx.doi.org/10.1088/0031-8949/36/2/020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Giuliani, Giuseppe. "Conservation laws and laser cooling of atoms." European Journal of Physics 36, no. 6 (2015): 065008. http://dx.doi.org/10.1088/0143-0807/36/6/065008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Strelkin, S. A., K. Yu Khabarova, A. A. Galyshev, et al. "Secondary laser cooling of strontium-88 atoms." Journal of Experimental and Theoretical Physics 121, no. 1 (2015): 19–26. http://dx.doi.org/10.1134/s1063776115060205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Metcalf, Harold. "Laser cooling and electromagnetic trapping of atoms." Optics News 13, no. 3 (1987): 6. http://dx.doi.org/10.1364/on.13.3.000006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Helmerson, Kristian, Alex Martin, and David E. Pritchard. "Laser cooling of magnetically trapped neutral atoms." Journal of the Optical Society of America B 9, no. 11 (1992): 1988. http://dx.doi.org/10.1364/josab.9.001988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Shevy, Y. "Laser cooling of atoms in squeezed vacuum." Physical Review Letters 64, no. 24 (1990): 2905–8. http://dx.doi.org/10.1103/physrevlett.64.2905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Donnan, P. H., M. C. Fujiwara, and F. Robicheaux. "A proposal for laser cooling antihydrogen atoms." Journal of Physics B: Atomic, Molecular and Optical Physics 46, no. 2 (2013): 025302. http://dx.doi.org/10.1088/0953-4075/46/2/025302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Wu, Huang, Ennio Arimondo, and Christopher J. Foot. "Pulsed sub-recoil laser cooling of atoms." Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 8, no. 5 (1996): 983–88. http://dx.doi.org/10.1088/1355-5111/8/5/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Xu, Xin-ye, Wen-li Wang, Qing-hong Zhou, et al. "Laser cooling and trapping of ytterbium atoms." Frontiers of Physics in China 4, no. 2 (2009): 160–64. http://dx.doi.org/10.1007/s11467-009-0033-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zhang, Weiping. "Vector Quantum Field Theory of Atoms: Nonlinear Atom Optics and Bose - Einstein Condensate." Australian Journal of Physics 49, no. 4 (1996): 819. http://dx.doi.org/10.1071/ph960819.

Full text
Abstract:
The recent experimental progress in laser cooling and trapping of neutral atoms brings the atomic samples into the ultracold regime where the bosonic atoms and fermionic atoms are expected to have different dynamic behaviours in the laser fields. In this paper we systematically introduce the theoretical study of interaction of an ultracold atomic ensemble with a light wave in the frame of a vector quantum field theory. The many-body quantum correlation in the ultracold regime of atom optics is studied in terms of vector quantum field theory. A general formalism of nonlinear atom optics for a c
APA, Harvard, Vancouver, ISO, and other styles
35

Parkins, A. S., and P. Zoller. "Laser cooling of atoms with broadband real Gaussian laser fields." Physical Review A 45, no. 9 (1992): 6522–38. http://dx.doi.org/10.1103/physreva.45.6522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kim, J. A., K. I. Lee, H. Nha, H. R. Noh, and W. Jhe. "Cold Atoms in a Hollow Mirror Trap." International Journal of Modern Physics B 11, no. 28 (1997): 3311–17. http://dx.doi.org/10.1142/s0217979297001611.

Full text
Abstract:
We present a novel and simple vapour-cell magneto-optical atom trap in a pyramidal and a conical hollow mirror cavity. A single laser beam having modulation sidebands at microwaves is used for cooling, trapping and repumping of rubidium atoms. When the laser is circularly polarized and sent into the hollow region, three pairs of counterpropagating beams are automatically produced therein, having the same polarization configuration as in the conventional six beam magneto-optical trap. The precooled atom sources thus produced may be used to obtain much colder and denser atoms for study of their
APA, Harvard, Vancouver, ISO, and other styles
37

Hoogerland, MD, D. Milic, W. Lu, H.-A. Bachor, KGH Baldwin, and SJ Buckman. "Production of Ultrabright Slow Atomic Beams Using Laser Cooling." Australian Journal of Physics 49, no. 2 (1996): 567. http://dx.doi.org/10.1071/ph960567.

Full text
Abstract:
We propose to use a three-step transverse and longitudinal cooling scheme, to compress and collimate a strongly diverging flow of metastable rare gas atoms. Simulations show that an atom beam flux of 1010 8−1 in a small diameter (−1 ) atomic beam could be achieved. This technique can be extremely valuable in many areas of atomic physics, e.g. in (electron) spectroscopy and atomic collision physics where high beam densities are desirable.
APA, Harvard, Vancouver, ISO, and other styles
38

Balykin, V. I., V. S. Letokhov, and V. G. Minogin. "Cooling atoms by means of laser radiation pressure." Uspekhi Fizicheskih Nauk 147, no. 9 (1985): 117. http://dx.doi.org/10.3367/ufnr.0147.198509d.0117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Shimizu, Fujio, Kazuko Shimizu, and Hiroshi Takuma. "Laser cooling and trapping of Ne metastable atoms." Physical Review A 39, no. 5 (1989): 2758–60. http://dx.doi.org/10.1103/physreva.39.2758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Balykin, Viktor I., V. S. Letokhov, and V. G. Minogin. "Cooling atoms by means of laser radiation pressure." Soviet Physics Uspekhi 28, no. 9 (1985): 803–26. http://dx.doi.org/10.1070/pu1985v028n09abeh003993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Gould, Phillip. "Laser cooling of atoms to the Doppler limit." American Journal of Physics 65, no. 11 (1997): 1120–23. http://dx.doi.org/10.1119/1.18740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ketterle, Wolfgang, Alex Martin, Michael A. Joffe, and David E. Pritchard. "Slowing and cooling atoms in isotropic laser light." Physical Review Letters 69, no. 17 (1992): 2483–86. http://dx.doi.org/10.1103/physrevlett.69.2483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Cohen-Tannoudji, C. "Laser cooling and trapping of neutral atoms: theory." Physics Reports 219, no. 3-6 (1992): 153–64. http://dx.doi.org/10.1016/0370-1573(92)90133-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ya Ilenkov, R., A. V. Taichenachev, V. I. Yudin, and O. N. Prudnikov. "Deep laser cooling of strontium atoms on1S0→3P0transition." Journal of Physics: Conference Series 793 (January 2017): 012011. http://dx.doi.org/10.1088/1742-6596/793/1/012011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kurosu, Takayuki, and Fujio Shimizu. "Laser Cooling and Trapping of Alkaline Earth Atoms." Japanese Journal of Applied Physics 31, Part 1, No. 3 (1992): 908–12. http://dx.doi.org/10.1143/jjap.31.908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kosachiov, D., B. Matisov та Yu Rozhdestvensky. "Phase-Sensitive Laser Cooling of Double-Λ Atoms". Europhysics Letters (EPL) 22, № 1 (1993): 11–16. http://dx.doi.org/10.1209/0295-5075/22/1/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Salomon, C., J. Dalibard, W. D. Phillips, A. Clairon та S. Guellati. "Laser Cooling of Cesium Atoms Below 3 μK". Europhysics Letters (EPL) 12, № 8 (1990): 683–88. http://dx.doi.org/10.1209/0295-5075/12/8/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Phillips, William D., John V. Prodan, and Harold J. Metcalf. "Laser cooling and electromagnetic trapping of neutral atoms." Journal of the Optical Society of America B 2, no. 11 (1985): 1751. http://dx.doi.org/10.1364/josab.2.001751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Javanainen, Juha. "Realistic laser cooling theory for multi-state atoms." Optics Communications 86, no. 6 (1991): 475–79. http://dx.doi.org/10.1016/0030-4018(91)90148-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Wieman, Carl E. "Bose–Einstein Condensation in an Ultracold Gas." International Journal of Modern Physics B 11, no. 28 (1997): 3281–96. http://dx.doi.org/10.1142/s0217979297001581.

Full text
Abstract:
Bose–Einstein condensation in a gas has now been achieved. Atoms are cooled to the point of condensation using laser cooling and trapping, followed by magnetic trapping and evaporative cooling. These techniques are explained, as well as the techniques by which we observe the cold atom samples. Three different signatures of Bose–Einstein condensation are described. A number of properties of the condensate, including collective excitations, distortions of the wave function by interactions, and the fraction of atoms in the condensate versus temperature, have also been measured.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!