To see the other types of publications on this topic, follow the link: Laser doppler anemometer; Anemometry.

Journal articles on the topic 'Laser doppler anemometer; Anemometry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Laser doppler anemometer; Anemometry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Klepikov, K. E., V. M. Kulybin, and B. S. Rinkevichyus. "Adaptive laser Doppler anemometer." Measurement Techniques 31, no. 12 (1988): 1165–68. http://dx.doi.org/10.1007/bf00862612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ristic, Slavica, Jelena Ilic, Djordje Cantrak, Ognjen Ristic, and Novica Jankovic. "Estimation of laser-Doppler anemometry measuring volume displacement in cylindrical pipe flow." Thermal Science 16, no. 4 (2012): 1027–42. http://dx.doi.org/10.2298/tsci1204027r.

Full text
Abstract:
Laser-Doppler anemometry application in measurements of the 3-D swirl turbulent flow velocity in the cylindrical pipe, behind the axial fan, have been analysed. This paper presents a brief overview of uncertainty sources in the laser-Doppler anemometry measurements. Special attention is paid to estimation of laser-Doppler anemometry measuring volume positioning in cylindrical pipe flow due to optical aberrations, caused by the pipe wall curvature. The hypothesis, that in the central part of the pipe (r/R < 0.6) exists a small, or negligible pipe wall influence on laser- -Doppler anemometry
APA, Harvard, Vancouver, ISO, and other styles
3

Marshall, B. J., R. Marwood, R. E. Belcher, and C. J. Wood. "Laser Doppler anemometry and conditional sampling." Journal of Wind Engineering and Industrial Aerodynamics 79, no. 3 (1999): 209–31. http://dx.doi.org/10.1016/s0167-6105(98)00120-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dubnishchev, Yu N., and V. A. Pavlov. "Photodynamic effects in laser Doppler anemometry." Quantum Electronics 28, no. 8 (1998): 741–43. http://dx.doi.org/10.1070/qe1998v028n08abeh001296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dubnishchev, Yu N., and V. A. Pavlov. "Photodynamic effects in laser Doppler anemometry." Technical Physics Letters 24, no. 9 (1998): 687–89. http://dx.doi.org/10.1134/1.1262245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Puharic, Mirjana, Slavica Ristic, Marina Kutin, and Zivoslav Adamovic. "Laser doppler anemometry in hydrodynamic testing." Journal of Russian Laser Research 28, no. 6 (2007): 619–28. http://dx.doi.org/10.1007/s10946-007-0047-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Winter, A. R., L. J. W. Graham, and K. Bremhorst. "Velocity Bias Associated With Laser Doppler Anemometer Controlled Processors." Journal of Fluids Engineering 113, no. 2 (1991): 250–55. http://dx.doi.org/10.1115/1.2909488.

Full text
Abstract:
The controlled processor has been proposed as a means of avoiding velocity bias in laser Doppler anemometry. A theoretical model is presented to show that results free of bias can be obtained if both the ratio of integral time scale to measurement time scale (integral scale data density) and the ratio of sampling time to the measurement time scale (normalized sample interval) are greater than five. Further, by separation of the integral scale data density and normalized sample interval parameters, it is shown that at any integral scale data density the controlled processor will not produce any
APA, Harvard, Vancouver, ISO, and other styles
8

Stieglmeier, Manfred, and Cameron Tropea. "Mobile fiber-optic laser Doppler anemometer." Applied Optics 31, no. 21 (1992): 4096. http://dx.doi.org/10.1364/ao.31.004096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Greated, C. A., S. H. Douglas, and R. Royles. "Laser Doppler Anemometry Study of Oscillating Bubbles." International Journal of Fluid Mechanics Research 29, no. 1 (2002): 13. http://dx.doi.org/10.1615/interjfluidmechres.v29.i1.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gerosa, S., and G. P. Romano. "Effect of noise in laser doppler anemometry." Mechanical Systems and Signal Processing 8, no. 2 (1994): 229–42. http://dx.doi.org/10.1006/mssp.1994.1018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Yoshida, S., and Y. Tashiro. "Underwater optical probe for laser Doppler anemometry." Journal of Physics E: Scientific Instruments 19, no. 10 (1986): 880–82. http://dx.doi.org/10.1088/0022-3735/19/10/024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Herde, M., V. Baier, K. Hoffmann, P. Altmeyer, and M. Stücker. "Klinische Provokationsmanöver mit dem Laser-Doppler-Anemometer." Phlebologie 27, no. 05 (1998): 152–58. http://dx.doi.org/10.1055/s-0037-1616968.

Full text
Abstract:
ZusammenfassungZiel dieser Studie war es, für das neue Verfahren der Laser-Doppler-Anemometrie klinische Provokationsmanöver zu evaluieren. Bei gesunden Probanden betrug die mittlere kapilläre Blutflußgeschwindigkeit in Ruhe, gemessen am dorsalen Grundglied des Zeigefingers, 0,47 ± 0,37 mm/s. Im Anschluß an eine suprasystolische Okklusion konnte eine postokklusive reaktive Hyperämie beobachtet werden. Die Spitzen der kapillären Blutflußgeschwindigkeit lagen in dieser Phase im Mittel bei 0,90 ± 0,46 mm/s. Die Zeit bis zum Erreichen der Geschwindigkeitsspitze belief sich durchschnittlich auf 24,
APA, Harvard, Vancouver, ISO, and other styles
13

Czarske, J., H. Zellmer, and H. Welling. "Directional achromatic heterodyne fiber laser Doppler anemometer." Optics Communications 160, no. 4-6 (1999): 268–72. http://dx.doi.org/10.1016/s0030-4018(98)00684-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Brown, R. G. W., J. G. Burnett, and N. Hackney. "A miniature, battery operated laser Doppler anemometer." Journal of Physics D: Applied Physics 21, no. 10S (1988): S20—S22. http://dx.doi.org/10.1088/0022-3727/21/10s/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wei-Qun Shu. "Cramer-Rao bound of laser Doppler anemometer." IEEE Transactions on Instrumentation and Measurement 50, no. 6 (2001): 1770–72. http://dx.doi.org/10.1109/19.982978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Rinkevichyus, B. S., A. V. Tolkachev, V. N. Sutorshin, and V. G. Chebunin. "Laser Doppler anemometer for measuring superlow velocities." Measurement Techniques 29, no. 5 (1986): 398–402. http://dx.doi.org/10.1007/bf00865941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Weremijewicz, Karolina, and Andrzej Gajewski. "Measurement Uncertainty Estimation for Laser Doppler Anemometer." Energies 14, no. 13 (2021): 3847. http://dx.doi.org/10.3390/en14133847.

Full text
Abstract:
Twenty percent of global electricity supplied to the buildings is used for preventing air temperature increase; its consumption for this prevention will triple by 2050 up to China’s present needs. Heat removed from the thermal power plants may drive cold generation in the absorption devices where mass and heat transfer are two-phase phenomena; hence liquid film break-up into the rivulets is extensively investigated, which needs knowledge of the velocity profiles. Laminar flow in a pipe is used in the preliminary study, velocity profile of developed flow is used as a benchmark. The study accoun
APA, Harvard, Vancouver, ISO, and other styles
18

Watanabe, Soiku, Yasuo Iwabuchi, and Shigeru Furuta. "Measurement of Aerodynamic Pattern in the Simulated Nasal Cavity by Laser Doppler Anemometry." American Journal of Rhinology 6, no. 5 (1992): 179–84. http://dx.doi.org/10.2500/105065892781874577.

Full text
Abstract:
Using a polyethylene model, the pattern of airflow in the nasal cavity was studied with the flow rate measured by a laser Doppler anemometer. Airflow in the nasal cavity was arch shaped with the fastest flow occurring near the olfactory fissure. There was little flow in the middle meatus in the inspiratory phase, but reverse flow was observed in expiratory phase, where the flow rate was faster than in the inspiratory phase. These findings offer a rational explanation of such physiological functions as olfaction and the warming and humidification of inspired air.
APA, Harvard, Vancouver, ISO, and other styles
19

Kliafas, Y., A. M. K. P. Taylor, and J. H. Whitelaw. "Errors Due to Turbidity in Particle Sizing Using Laser-Doppler Anemometry." Journal of Fluids Engineering 112, no. 2 (1990): 142–48. http://dx.doi.org/10.1115/1.2909377.

Full text
Abstract:
Flow turbidity, when introduced between the transmitting and receiving optics and the measuring volume of a laser-Doppler anemometer, changes the pedestal amplitude and visibility of the signal. The purpose of this work is to assess the effect on the accuracy of particle sizing, based on measurements of these two quantities, for depths of field of 5 and 10 cm, interrupting particle diameters between 14 to 212 μm in three discrete ranges and void fractions up to 0.1 percent. The turbidity introduces random fluctuations in visibility which increase with void fraction and the resulting rms errors
APA, Harvard, Vancouver, ISO, and other styles
20

Jentink, H. W., M. Stieglmeier, and C. Tropea. "In-flight velocity measurements using laser Doppler anemometry." Journal of Aircraft 31, no. 2 (1994): 444–46. http://dx.doi.org/10.2514/3.46507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dubbelday, Pieter S., and H. C. Schau. "Laser Doppler anemometry detection of hydroacoustic particle velocity." Journal of the Acoustical Society of America 86, no. 3 (1989): 891–94. http://dx.doi.org/10.1121/1.398723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Tropea, C. "Laser Doppler anemometry: recent developments and future challenges." Measurement Science and Technology 6, no. 6 (1995): 605–19. http://dx.doi.org/10.1088/0957-0233/6/6/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Crickmore, R. I., S. H. Jack, D. B. Hann, and C. A. Greated. "Laser Doppler anemometry and the acousto-optic effect." Optics & Laser Technology 31, no. 1 (1999): 85–94. http://dx.doi.org/10.1016/s0030-3992(99)00030-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

CHEN, KAI-YUAN, JEAN-CHRISTOPHE HAJDUK, and JAMES W. JOHNSON. "LASER-DOPPLER ANEMOMETRY IN A BAFFLED MIXING TANK." Chemical Engineering Communications 72, no. 1 (1988): 141–57. http://dx.doi.org/10.1080/00986448808940013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Dubbleday, P. S., and H. C. Schau. "Laser Doppler anemometry detection of hydroacoustic particle velocity." Journal of the Acoustical Society of America 83, S1 (1988): S105. http://dx.doi.org/10.1121/1.2025108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Diasinos, S., C. Beves, and T. Barber. "Alignment technique for three-dimensional laser Doppler anemometry." Measurement Science and Technology 24, no. 1 (2012): 017001. http://dx.doi.org/10.1088/0957-0233/24/1/017001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ramazanov, Ilnar F., Farit F. Ramazanov, and Leysan F. Ryadninskaya. "Investigating High Turbulent Flows by Laser Doppler Anemometry." HELIX 9, no. 5 (2019): 5358–64. http://dx.doi.org/10.29042/2019-5358-5364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Harris, Michael, Guy N. Pearson, Kevin D. Ridley, Christer J. Karlsson, Fredrik Å. A. Olsson, and Dietmar Letalick. "Single-particle laser Doppler anemometry at 155 µm." Applied Optics 40, no. 6 (2001): 969. http://dx.doi.org/10.1364/ao.40.000969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Durst, F., and B. Ruck. "Effective particle size range in laser-Doppler anemometry." Experiments in Fluids 5, no. 5 (1987): 305–14. http://dx.doi.org/10.1007/bf00277709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Fuertes, Fernando Carbajo, Giacomo Valerio Iungo, and Fernando Porté-Agel. "3D Turbulence Measurements Using Three Synchronous Wind Lidars: Validation against Sonic Anemometry." Journal of Atmospheric and Oceanic Technology 31, no. 7 (2014): 1549–56. http://dx.doi.org/10.1175/jtech-d-13-00206.1.

Full text
Abstract:
Abstract This paper presents a technique to measure the time series of the three components of the wind vector at a point in space from synchronous measurements of three scanning Doppler wind lidars. Knowing the position of each lidar on the ground and the orientation of each laser beam allows for reconstructing the three components of the wind velocity vector. The laser beams must intersect at the desired point in space and their directions must be noncoplanar, so that trigonometric relationships allow the reconstruction of the velocity vector in any coordinate system. This technique has been
APA, Harvard, Vancouver, ISO, and other styles
31

Hansen, René Skov, та Christian Pedersen. "All semiconductor laser Doppler anemometer at 155 μm". Optics Express 16, № 22 (2008): 18288. http://dx.doi.org/10.1364/oe.16.018288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Qui, H. H., M. Sommerfeld, and F. Durst. "Two novel Doppler signal detection methods for laser Doppler and phase Doppler anemometry." Measurement Science and Technology 5, no. 7 (1994): 769–78. http://dx.doi.org/10.1088/0957-0233/5/7/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Faure, Thierry M., Guy-Jean Michon, Hubert Miton, and Nicolas Vassilieff. "Laser Doppler Anemometry Measurements in an Axial Compressor Stage." Journal of Propulsion and Power 17, no. 3 (2001): 481–91. http://dx.doi.org/10.2514/2.5776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kehoe, Anthony B., and Prateen V. Desai. "Compensation for refractive-index variations in laser Doppler anemometry." Applied Optics 26, no. 13 (1987): 2582. http://dx.doi.org/10.1364/ao.26.002582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lockey, R. A., and R. P. Tatam. "Multicomponent time-division-multiplexed optical fibre laser Doppler anemometry." IEE Proceedings - Optoelectronics 144, no. 3 (1997): 168. http://dx.doi.org/10.1049/ip-opt:19971315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ruck, Bodo, and Boris Pavlovski. "Particle-Induced Limits of Accuracy in Laser Doppler Anemometry." Particle & Particle Systems Characterization 10, no. 3 (1993): 129–37. http://dx.doi.org/10.1002/ppsc.19930100305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ritschl, L., A. Balasso, K. D. Wolff, D. Liepsch, and T. Mücke. "Flow Analyses of Microvascular Bifurcation Using Laser Doppler Anemometry." Journal of Reconstructive Microsurgery 29, no. 06 (2013): 399–406. http://dx.doi.org/10.1055/s-0033-1343831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kassab, Sadek Z., Ayman E. Bakry, and Hassan A. Warda. "Laser Doppler anemometry measurements in an axisymmetric turbulent jet." Review of Scientific Instruments 67, no. 5 (1996): 1842–49. http://dx.doi.org/10.1063/1.1146966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

McBeth, Michael S., and Robert Younts. "Detection of low intensity sound with laser Doppler anemometry." Journal of the Acoustical Society of America 140, no. 4 (2016): 3421. http://dx.doi.org/10.1121/1.4971005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Bertrand, C., P. Desevaux, and J. P. Prenel. "Micropositioning of a measuring volume in laser Doppler anemometry." Experiments in Fluids 16, no. 1 (1993): 70–72. http://dx.doi.org/10.1007/bf00188510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Minson, A. J., and C. J. Wood. "Extreme velocities near building faces using laser Doppler anemometry." Journal of Wind Engineering and Industrial Aerodynamics 52 (May 1994): 121–37. http://dx.doi.org/10.1016/0167-6105(94)90043-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Durst, F., R. Müller, and J. Jovanovic. "Determination of the measuring position in laser-Doppler anemometry." Experiments in Fluids 6, no. 2 (2004): 105–10. http://dx.doi.org/10.1007/bf00196460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bütefisch, Karl-Aloys. "Three component laser doppler anemometry in large wind tunnels." Progress in Aerospace Sciences 26, no. 1 (1989): 79–113. http://dx.doi.org/10.1016/0376-0421(89)90003-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Faure, Thierry M., Hubert Miton, and Nicolas Vassilieff. "A laser Doppler anemometry technique for Reynolds stresses measurement." Experiments in Fluids 37, no. 3 (2004): 465–67. http://dx.doi.org/10.1007/s00348-004-0810-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zimmel, M., J. Rath, G. Staudinger, B. Simpson, M. Brown, and J. Balmer. "Comparison of velocity measurements by high temperature anemometer and laser-doppler anemometer with results of CFD-simulation." Thermal Science 6, no. 1 (2002): 3–13. http://dx.doi.org/10.2298/tsci0201003z.

Full text
Abstract:
In the present work, results of gas velocity measurements with a newly developed vane anemometer (HTA - High Tem per a ture Anemometer) are compared with re sults of measurements obtained from Laser-Doppler Anemometer (LDA). The measurements were carried out at the combustion test rig of ALSTOM Combustion Services Ltd. in Derby/UK, and demonstrate the usability and accuracy of the HTA under severe conditions. The test rig was provided with a triple register low NOx coal burner firing pulverised Colombian blended coal at a constant thermal load of 30 MW. Although the environment was both very h
APA, Harvard, Vancouver, ISO, and other styles
46

Dopheide, D., M. Faber, G. Reim, and G. Taux. "Laser and avalanche diodes for velocity measurement by laser Doppler anemometry." Experiments in Fluids 6, no. 5 (1988): 289–97. http://dx.doi.org/10.1007/bf00538819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Durst, Franz, Reiner Muller, and Amir A. Naqwi. "Semiconductor laser Doppler anemometer for applications in aerodynamic research." AIAA Journal 30, no. 4 (1992): 1033–38. http://dx.doi.org/10.2514/3.11024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Nezu, Iehisa, and Wolfgang Rodi. "Open‐channel Flow Measurements with a Laser Doppler Anemometer." Journal of Hydraulic Engineering 112, no. 5 (1986): 335–55. http://dx.doi.org/10.1061/(asce)0733-9429(1986)112:5(335).

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sobolev, V. S., and A. A. Feshenko. "Accurate Cramer–Rao Bounds for a Laser Doppler Anemometer." IEEE Transactions on Instrumentation and Measurement 55, no. 2 (2006): 659–65. http://dx.doi.org/10.1109/tim.2006.870334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Antoine, M. M., and R. L. Simpson. "A rapidly scanning three-velocity-component laser Doppler anemometer." Journal of Physics E: Scientific Instruments 19, no. 10 (1986): 853–58. http://dx.doi.org/10.1088/0022-3735/19/10/018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!