Journal articles on the topic 'Laser-driven Boron Neutron capture'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Laser-driven Boron Neutron capture.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Edgecock, Rob. "Accelerator-driven boron neutron capture therapy." International Journal of Modern Physics A 29, no. 14 (2014): 1441004. http://dx.doi.org/10.1142/s0217751x14410048.
Full textHideghéty, Katalin, Rita Emilia Szabó, Róbert Polanek, Zoltán Szabó, Szilvia Brunner, and Tünde Tőkés. "New approaches in clinical application of laser-driven ionizing radiation." Proc. SPIE 10239, Medical Applications of Laser-Generated Beams of Particles IV: Review of Progress and Strategies for the Future 10239 (May 16, 2017): 102390A. https://doi.org/10.1117/12.2268300.
Full textZavestovskaya, Irina N., Anna I. Kasatova, Dmitry A. Kasatov, et al. "Laser-Synthesized Elemental Boron Nanoparticles for Efficient Boron Neutron Capture Therapy." International Journal of Molecular Sciences 24, no. 23 (2023): 17088. http://dx.doi.org/10.3390/ijms242317088.
Full textZaboronok, Alexander, Polina Khaptakhanova, Sergey Uspenskii, et al. "Polymer-Stabilized Elemental Boron Nanoparticles for Boron Neutron Capture Therapy: Initial Irradiation Experiments." Pharmaceutics 14, no. 4 (2022): 761. http://dx.doi.org/10.3390/pharmaceutics14040761.
Full textChakrabarti, Amartya, and Narayan S. Hosmane. "Nanotechnology-driven chemistry of boron materials." Pure and Applied Chemistry 84, no. 11 (2012): 2299–308. http://dx.doi.org/10.1351/pac-con-12-01-05.
Full textAiyyzhy, Kuder O., Ekaterina V. Barmina, Irina N. Zavestovskaya, et al. "Laser ablation of Fe2B target enriched in 10B content for boron neutron capture therapy." Laser Physics Letters 19, no. 6 (2022): 066002. http://dx.doi.org/10.1088/1612-202x/ac642c.
Full textHaselsberger, Klaus, Herbert Radner, Walter Gössler, Claudia Schlagenhaufen, and Gerhard Pendl. "Subcellular boron-10 localization in glioblastoma for boron neutron capture therapy with Na2B12H11SH." Journal of Neurosurgery 81, no. 5 (1994): 741–44. http://dx.doi.org/10.3171/jns.1994.81.5.0741.
Full textYinghuai, Zhu, Koh Cheng Yan, John A. Maguire, and Narayan S. Hosmane. "Recent Developments in Boron Neutron Capture Therapy (BNCT) Driven by Nanotechnology." Current Chemical Biology 1, no. 2 (2007): 141–49. http://dx.doi.org/10.2174/187231307780636431.
Full textYinghuai, Zhu, Koh Cheng Yan, John Maguire, and Narayan Hosmane. "Recent Developments in Boron Neutron Capture Therapy (BNCT) Driven by Nanotechnology." Current Chemical Biology 1, no. 2 (2007): 141–49. http://dx.doi.org/10.2174/2212796810701020141.
Full textSkalyga, V., I. Izotov, S. Golubev, et al. "Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 768 (December 2014): 146–50. http://dx.doi.org/10.1016/j.nima.2014.09.058.
Full textZhang, Zizhu, Yizheng Chong, Yuanhao Liu, et al. "A Review of Planned, Ongoing Clinical Studies and Recent Development of BNCT in Mainland of China." Cancers 15, no. 16 (2023): 4060. http://dx.doi.org/10.3390/cancers15164060.
Full textLai, Yuxuan, and Yigang Yang. "A Design for the High Yield Photoneutron Source Target Station." Materials 15, no. 21 (2022): 7674. http://dx.doi.org/10.3390/ma15217674.
Full textPowell, James R., Hans Ludewig, Michael Todosow, and Morris Reich. "Target and Filter Concepts for Accelerator-Driven Boron Neutron Capture Therapy Applications." Nuclear Technology 125, no. 1 (1999): 104–15. http://dx.doi.org/10.13182/nt99-a2936.
Full textNishitani, Takeo, Sachiko Yoshihashi, Yuuki Tanagami, et al. "Neutronics Analyses of the Radiation Field at the Accelerator-Based Neutron Source of Nagoya University for the BNCT Study." Journal of Nuclear Engineering 3, no. 3 (2022): 222–32. http://dx.doi.org/10.3390/jne3030012.
Full textKalot, Ghadir, Amélie Godard, Benoît Busser, et al. "Aza-BODIPY: A New Vector for Enhanced Theranostic Boron Neutron Capture Therapy Applications." Cells 9, no. 9 (2020): 1953. http://dx.doi.org/10.3390/cells9091953.
Full textKasatova, A. I., K. S. Kuzmina, D. A. Kasatov, et al. "Elemental Boron-10 Nanoparticles Synthesized by Laser Fragmentation for Boron Neutron Capture Therapy: In Vitro Experiments." Bulletin of the Lebedev Physics Institute 52, no. 2 (2025): 95–102. https://doi.org/10.3103/s1068335624602541.
Full textWatanabe, Kenichi, Sachiko Yoshihashi, Akihisa Ishikawa, et al. "First experimental verification of the neutron field of Nagoya University Accelerator-driven neutron source for boron neutron capture therapy." Applied Radiation and Isotopes 168 (February 2021): 109553. http://dx.doi.org/10.1016/j.apradiso.2020.109553.
Full textGanda, Francesco, Jasmina Vujic, Ehud Greenspan, and Ka-Ngo Leung. "Compact D-D Neutron Source-Driven Subcritical Multiplier and Beam-Shaping Assembly for Boron Neutron Capture Therapy." Nuclear Technology 172, no. 3 (2010): 302–24. http://dx.doi.org/10.13182/nt10-a10939.
Full textAngelone, M., S. Atzeni, and S. Rollet. "Conceptual study of a compact accelerator-driven neutron source for radioisotope production, boron neutron capture therapy and fast neutron therapy." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 487, no. 3 (2002): 585–94. http://dx.doi.org/10.1016/s0168-9002(02)00399-6.
Full textKusaka, Sachie, Yumi Miyake, Yugo Tokumaru, et al. "Boron Delivery to Brain Cells via Cerebrospinal Fluid (CSF) Circulation in BNCT of Brain-Tumor-Model Rats—Ex Vivo Imaging of BPA Using MALDI Mass Spectrometry Imaging." Life 12, no. 11 (2022): 1786. http://dx.doi.org/10.3390/life12111786.
Full textHiraga, F. "Monte Carlo simulation-based design for an electron-linear-accelerator-driven subcritical neutron multiplier for boron neutron capture therapy." Applied Radiation and Isotopes 140 (October 2018): 121–25. http://dx.doi.org/10.1016/j.apradiso.2018.06.023.
Full textKurihara, Toshikazu, and Hitoshi Kobayashi. "Diffusion bonded Be neutron target using 8MeV proton beam." EPJ Web of Conferences 231 (2020): 03001. http://dx.doi.org/10.1051/epjconf/202023103001.
Full textHiraga, F. "Optimum design and criticality safety of a beam-shaping assembly with an accelerator-driven subcritical neutron multiplier for boron neutron capture therapies." Applied Radiation and Isotopes 106 (December 2015): 84–87. http://dx.doi.org/10.1016/j.apradiso.2015.07.029.
Full textInoue, R., F. Hiraga, and Y. Kiyanagi. "Optimum design of a moderator system based on dose calculation for an accelerator driven Boron Neutron Capture Therapy." Applied Radiation and Isotopes 88 (June 2014): 225–28. http://dx.doi.org/10.1016/j.apradiso.2013.12.017.
Full textCerullo, N., J. Esposito, and K. N. Leung. "Irradiation facility for boron neutron capture therapy application based on a rf-driven D–T neutron source and a new beam shaping assembly (abstract)." Review of Scientific Instruments 73, no. 2 (2002): 938. http://dx.doi.org/10.1063/1.1433920.
Full textRaskolupova, Valeria I., Tatyana V. Popova, Olga D. Zakharova, Anastasia E. Nikotina, Tatyana V. Abramova, and Vladimir N. Silnikov. "Human Serum Albumin Labelling with a New BODIPY Dye Having a Large Stokes Shift." Molecules 26, no. 9 (2021): 2679. http://dx.doi.org/10.3390/molecules26092679.
Full textCerullo, Nicola, Juan Esposito, Ka Ngo Leung, and Salvatore Custodero. "An irradiation facility for Boron Neutron Capture Therapy application based on a radio frequency driven D–T neutron source and a new beam shaping assembly." Review of Scientific Instruments 73, no. 10 (2002): 3614–18. http://dx.doi.org/10.1063/1.1505128.
Full textZavestovskaya, Irina N., Anton L. Popov, Danil D. Kolmanovich, et al. "Boron Nanoparticle-Enhanced Proton Therapy for Cancer Treatment." Nanomaterials 13, no. 15 (2023): 2167. http://dx.doi.org/10.3390/nano13152167.
Full textRaskolupova, Valeria I., Tatyana V. Popova, Olga D. Zakharova, Tatyana V. Abramova, and Vladimir N. Silnikov. "New BODIPY Dye with a Large Stokes Shift for Biopolymer Labelling." Chemistry Proceedings 3, no. 1 (2020): 72. http://dx.doi.org/10.3390/ecsoc-24-08304.
Full textHashimoto, Y., F. Hiraga, and Y. Kiyanagi. "Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven 9Be(p, n) boron neutron capture therapy neutron source." Applied Radiation and Isotopes 106 (December 2015): 88–91. http://dx.doi.org/10.1016/j.apradiso.2015.07.027.
Full textWebster, Matthew, Alexander Podgorsak, Fiona Li, et al. "New Approaches in Radiotherapy." Cancers 17, no. 12 (2025): 1980. https://doi.org/10.3390/cancers17121980.
Full textMorris, Austin, Jianfeng Lv, and Yuanrong Lu. "LASER-DRIVEN LITHIUM NEUTRON CAPTURE THERAPY." International Journal of Particle Therapy 12 (June 2024): 100522. http://dx.doi.org/10.1016/j.ijpt.2024.100522.
Full textSchollmeier, Marius S., Vahe Shirvanyan, Christie Capper, et al. "Investigation of Proton Beam-Driven Fusion Reactions Generated by an Ultra-Short Petawatt-Scale Laser Pulse." Laser and Particle Beams 2022 (October 13, 2022): 1–13. http://dx.doi.org/10.1155/2022/2404263.
Full textHora, H., G. H. Miley, N. Azizi, B. Malekynia, M. Ghoranneviss, and X. T. He. "Nonlinear force driven plasma blocks igniting solid density hydrogen boron: Laser fusion energy without radioactivity." Laser and Particle Beams 27, no. 3 (2009): 491–96. http://dx.doi.org/10.1017/s026303460999022x.
Full textHegelich, B. M., L. Labun, O. Z. Labun, and T. A. Mehlhorn. "Photon and Neutron Production as In Situ Diagnostics of Proton-Boron Fusion." Laser and Particle Beams 2023 (May 8, 2023): 1–14. http://dx.doi.org/10.1155/2023/6924841.
Full textPastukhov, Andrei I., Iaroslav B. Belyaev, Julia C. Bulmahn, et al. "Laser-ablative aqueous synthesis and characterization of elemental boron nanoparticles for biomedical applications." Scientific Reports 12, no. 1 (2022). http://dx.doi.org/10.1038/s41598-022-13066-8.
Full textKiyanagi, Yoshiaki. "Neutron applications developing at compact accelerator-driven neutron sources." AAPPS Bulletin 31, no. 1 (2021). http://dx.doi.org/10.1007/s43673-021-00022-3.
Full textTani, Toshiaki, Tomoya Fujita, Masaki Misawa, et al. "Advanced Boron Neutron Capture Therapy Targeting Cancer Stem Cells by Selective Induction of LAT1 Overexpression." Radiation Research, May 22, 2023. http://dx.doi.org/10.1667/rade-22-00195.1.
Full textIwasaki, Ryota, Ryutaro Yoshikawa, Ryo Umeno, et al. "The effects of BPA-BNCT on normal bone: determination of the CBE value in mice." Journal of Radiation Research, July 29, 2023. http://dx.doi.org/10.1093/jrr/rrad054.
Full textHu, Yaocheng, Xiaobo Li, Yongsheng Lv, et al. "Simulations on the thermal and mechanical performance of the rotating target system of accelerator-driven neutron source for Boron Neutron Capture Therapy(BNCT)." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, May 2023, 168340. http://dx.doi.org/10.1016/j.nima.2023.168340.
Full textScaramuzza, Stefano, Clara M. G. de Faria, Vito Coviello, et al. "A Laser Synthesis Route to Boron‐Doped Gold Nanoparticles Designed for X‐Ray Radiotherapy and Boron Neutron Capture Therapy Assisted by CT Imaging." Advanced Functional Materials, June 20, 2023. http://dx.doi.org/10.1002/adfm.202303366.
Full textHonda, Shogo, Sachiko Yoshihashi, Yukinori Hamaji, et al. "Evaluation of heat removal performance of a sealed Li target for an accelerator-driven neutron source of Boron Neutron Capture Therapy at Nagoya University." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, August 2022, 167414. http://dx.doi.org/10.1016/j.nima.2022.167414.
Full textMiyake, Yumi, Sachie Kusaka, Isao Murata, and Michisato Toyoda. "Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry Imaging of L-4-Phenylalanineboronic Acid (BPA) in a Brain Tumor Model Rat for Boron Neutron Capture Therapy (BNCT)." Mass Spectrometry, 2022. http://dx.doi.org/10.5702/massspectrometry.a0105.
Full textNeudecker, D., T. E. Cutler, M. Devlin, et al. "Machine Learning to Select Experiments Driven by Fundamental Science and Applications for Targeted Nuclear Data Improvement." Physical Review X 15, no. 2 (2025). https://doi.org/10.1103/physrevx.15.021086.
Full textDosanjh, Manjit, Alberto Degiovanni, Maria Monica Necchi, and Elena Benedetto. "Multidisciplinary Collaboration and Novel Technological Advances in Hadron Therapy." Technology in Cancer Research & Treatment 24 (January 2025). https://doi.org/10.1177/15330338241311859.
Full textMorris, Austin A., Jianfeng Lv, and Yuanrong Lu. "Advancing lithium neutron capture therapy: 6Li-loaded nanoparticles and laser-driven neutron sources." Applied Physics Letters 124, no. 4 (2024). http://dx.doi.org/10.1063/5.0185189.
Full textHill, Paul, and Yuanbin Wu. "Exploring laser-driven neutron sources for neutron capture cascades and the production of neutron-rich isotopes." Physical Review C 103, no. 1 (2021). http://dx.doi.org/10.1103/physrevc.103.014602.
Full textJiao, X., C. B. Curry, M. Gauthier, et al. "High deuteron and neutron yields from the interaction of a petawatt laser with a cryogenic deuterium jet." Frontiers in Physics 10 (January 9, 2023). http://dx.doi.org/10.3389/fphy.2022.964696.
Full textTosca, Marco, Daniel Molloy, Aaron McNamee, et al. "Plasma polymers as targets for laser-driven proton-boron fusion." Frontiers in Physics 11 (July 27, 2023). http://dx.doi.org/10.3389/fphy.2023.1227140.
Full textVundru, Chaitanya, Ramesh Singh, Wenyi Yan, and Shyamprasad Karagadde. "The Effect of Martensitic Transformation on the Evolution of Residual Stresses and Identification of the Critical Linear Mass Density in Direct Laser Metal Deposition–Based Repair." Journal of Manufacturing Science and Engineering 142, no. 7 (2020). http://dx.doi.org/10.1115/1.4046828.
Full text