Dissertations / Theses on the topic 'Laser gyroscopes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 23 dissertations / theses for your research on the topic 'Laser gyroscopes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Rabeendran, Nishanthan. "A Study of Ring Laser Gyroscopes." Thesis, University of Canterbury. Physics and Astronomy, 2008. http://hdl.handle.net/10092/1989.
Full textRabeendran, Nishanthan. "New Approaches to Gyroscopic Lasers." Thesis, University of Canterbury. Physics and Astronomy, 2013. http://hdl.handle.net/10092/8609.
Full textGraham, Richard Douglas. "New Concepts for Operating Ring Laser Gyroscopes." Thesis, University of Canterbury. Physics and Astronomy, 2010. http://hdl.handle.net/10092/5058.
Full textTian, Wei. "Modeling and Data Analysis of Large Ring Laser Gyroscopes." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-130967.
Full textRing laser gyroscopes measure inertial rotations locally and in real-time without the need for an external reference system. Initially, they were developed for aircraft navigation applications in the 1970s. With the improvement of ring laser technology during the last decades large ring laser gyroscopes (RLGs) are nowadays used as independent geodetic instruments. Due to the achievable accuracy more and more geophysical signals become observable in the data. The G-ring located at the Geodetic Observatory Wettzell is reckoned as the most stable one amongst the running large RLGs and reaches a sensitivity of 1.2 x 10 -11 nrad. Therefore, the instrument is able to detect a tilt signal of 1 nrad (equivalent to a signal of 0.2 mas in polar motion or 10 -9 Ω0 in variation of Earth rotation rate) in the diurnal and semi-diurnal band. This motivates us to improve previous geophysical models and estimate associated tilt and Earth rotation signals, which are the focuses of this Thesis. Firstly, we construct three local proper topocentric reference frames and interpret the Sagnac effect observed by large RLGs in the first post-Newtonian (PN) approximation of Einstein's theory of gravity. Secondly, in Chapter 3 we develop an improved orientation model for the Sagnac platform, based on the numerical results of Dehant et al. (1999). A missing tilt term in previous RLG tilt models is found. In Chapter 4, based on the Euler-Liouville equations or nutation transfer functions for a rigid Earth, a purely elastic Earth, a two-layered Earth and a three-layered Earth, five retrograde diurnal polar motion models are computed with the HW95 tidal potential catalogue. Thirdly, ocean tide effects (two aspects: effects on sub-daily variations of Earth rotation and loading effect on tilt) are considered in Chapter 5. We show that the Sagnac signals induced by ocean tides are larger than 10 -9 Δf0 (Δf0 348 Hz for the G-ring) and their influences are visible in the G-ring. Fourthly, based on the above-mentioned improved models and 168 days (from Apr.30 to Oct.17 in 2010) of G-ring data, in the diurnal band, we estimate the retrograde diurnal polar motion signal with an accuracy of 0.15 mas. The Earth tide software ETERNA 3.40 was adopted and modified to analyse this data. Our estimation provides one more evidence for the existence of the Earth's fluid outer core. Furthermore, we found that the tidal parameters for the G-ring are affected by the cavity and topographic effects in the semi-diurnal band. The local air pressure record is used in order to investigate the atmospheric loading effect on the G-ring by a simple regression model. Nevertheless, the preliminary result shows that no significant influence from atmospheric loading on our estimation is found. This Thesis closes with a summary of the obtained results, conclusions and suggestions how the analysis of ring laser data could be improved in future work
Badaoui, Noad. "Dynamique et estimation paramétrique pour les gyroscopes laser à milieu amplificateur gazeux." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEM058/document.
Full textGaz ring laser gyroscopes provide a high performance technical solution for inertial navigation. However, for very low rotational speeds, the mirrors imperfections of the optical cavity induce a locking phenomena between the phases of the two counter-propagating Laser beams. Hence, the measurements of the phase difference can no longer be used when the speed is within an area around zero, called lock-in zone, or,if a procedure of mechanical dithering is implemented, dithering lock-in zone. Nevertheless, this work shows that it is possible using filtering and estimation methods to measure the speed even within the lock-in zones. To achieve this result, we exploit a physical modeling of the dynamics that we simplify, using singular perturbation techniques, to obtain a generalization of Lamb's equations. There are four non-linear differential equations describing the dynamics of the intensities and phases of the two counter-propagating beams. A qualitative study by regular perturbation theory, exponential stability of the equilibrium points and Poincaré maps allows a characterisation of the lock-in zones according to the mirrors imperfections. It is then possible to estimate online, with an asymptotic observer based on recursive least squares, these imperfections by considering the additional measurements of the beam intensities. Accurate knowledge of these imperfections enables us to compensate them in the dynamic of the relative phase, and thus to estimate rotational speeds within the lock-in zones. Detailed numerical simulations illustrate the interest of those observers to increase the accuracy of gas ring laser gyroscopes
Gaponov, Dmitry. "Propriétés optiques de fibres optiques microstructurées et laser à fibre de Bragg à grande aire modale." Limoges, 2008. http://aurore.unilim.fr/theses/nxfile/default/2af9d018-b039-4465-886e-0261ba1e73f3/blobholder:0/2008LIMO4067.pdf.
Full textNowadays we observe a constant increasing of the amount of publications connected with Micro-structured Optical Fibers (MOFs). Nevertheless the unclear physical questions are still remaining in this field. From the other hand, applying of such structures is attractive in different fields of science and technology due to their unique optical properties. Our work is devoted to the theoretical analysis of some of the basic MOF types and to the experimental creation of fiber laser based on large mode area (LMA) 1-D photonic bandgap fiber (i. E. Bragg Fiber, BF). In the experimental part we investigated the Yb-doped LMA BF. We created a fiber laser based on this fiber with pumping into the cladding. We obtained the efficient singlemode lasing with low bend sensitivity, to the best of our knowledge, for the first time in such type of fibers
Mallek-Bouras, Djouher. "Etude de l'effet Brillouin en cavité laser." Angers, 2011. http://www.theses.fr/2011ANGE0008.
Full textThis study serves to understand the origin of the instabilities observed experimentally in the high power double cladding fiber lasers. The irnplementation of a kinetic model which describes the spatiotemporal evolution of the intensity of a high power fiber laser in the presence of the scattering Brillouin was studied in the first part. The Fabry-Perot laser cavity was considered. It is established by two rnirrors what drives to the existence of two laser waves which propagate in opposite sense, as well as of two Stokes waves associated with the waves lasers. The presence of al1 these waves under the curve of gain requires the consideration of the saturation crossed between the waves laser and the waves Stokes. The most important original result of this study is that in the presence of the stimulated scattering Brillouin, the ytterbium doped fiber laser presents an auto-impulsive functioning in the case of a cavity to strong losses without any absorbent saturable. For the case of cavity with low losses the dynamics presents a continuous functioning whatever the rate of pumping. The f i e n c e of the stimulated scattering Brillouin in a laser cavity with low losses was studied numerically in the second part, by using the model of the coupled amplitudes and by taking into account the dynamics of the acoustic wave. Rich and complex dynamic are observed
Mignot, Augustin. "Gyrolaser semi-conducteur à cavité externe." Phd thesis, Ecole Polytechnique X, 2008. http://pastel.archives-ouvertes.fr/pastel-00004908.
Full textTian, Wei [Verfasser], Michael H. [Akademischer Betreuer] Soffel, Aleksander [Akademischer Betreuer] Brzeziński, and Harald [Akademischer Betreuer] Schuh. "Modeling and Data Analysis of Large Ring Laser Gyroscopes / Wei Tian. Gutachter: Michael H. Soffel ; Aleksander Brzezinski ; Harald Schuh. Betreuer: Michael H. Soffel." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://d-nb.info/1068444673/34.
Full textAltorio, Matteo. "Novel atom interferometry techniques for a cold-atom gyroscope of large Sagnac area Atom interferometry with top-hat laser beams Improving the phase response of an atom interferometer by means of temporal pulse shaping." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS449.
Full textThis thesis describes the implementation of new atom interferometry techniques to improve the stability and accuracy of a cold-atom gyroscope located at the SYRTE laboratory. Stimulated Raman transitions are used to split and recombine the atomic waves. A sequence of four light pulses generates an interferometer with a Sagnac area of 11 cm2. I present the implementation of an interleaved interrogation scheme, where three atomic clouds are interrogated simultaneously in an atom interferometer featuring a sampling rate of 3.75 Hz and an interrogation time of 801 ms. With this scheme we demonstrate a short-term sensitivity of 30 nrad·s-1·Hz-1/2. We then present measurements of dynamic rotation rates in a so far unexplored range for a cold atom sensor. An important bias of the sensor originates from a coupling between a relative misalignment of the mirrors which retro-reflect the Raman beams and the trajectory of the atom. A technique is introduced to reduce this bias at the level of 3 nrad·s-1 and to achieve a long-term stability of 0.3 nrad·s-1 which represents the state of the art for atomic gyroscopes. The manuscript then describes the first characterization of the scale factor of the gyroscope using different techniques. In particular, the implementation of a rotation stage below the sensor enables us to vary the projection of the Erath rotation rate vector onto the interferometer area and therefore to modulate the rotation phase shift. The implementation of the techniques presented in this thesis pave paving the way to a test of the Sagnac effect for matter waves with a relative accuracy level below 100 parts per million
Parriaux, Alexandre. "Génération de peignes de fréquences par modulation électro-optique et applications." Thesis, Bourgogne Franche-Comté, 2020. https://nuxeo.u-bourgogne.fr/nuxeo/site/esupversions/d741c734-bc90-4d7b-a8ba-66657dfe685d.
Full textThe work presented in this thesis relates the development of a dual frequency comb spectrometer based on the electro-optic modulation of a continuous wave laser, and its utilisation for spectroscopic applications in the near- and mid-infrared.Since their discovery in the 1960s, frequency combs have revolutionised the physics, especially in metrology but also in spectroscopy, which lead to the Nobel Prize in Physics in 2005. In this domain of applications, dual frequency comb spectrometers are known to be complex to develop and use. A possibility to bypass these constraints is to build the spectrometer with electro-optic modulators. This particular architecture makes the experimental setup easy to use, thanks to the all-fibered feature and the lack of enslavement needed.In this manuscript, the work related describe first the architecture of a dual-comb spectrometer based on electro-optic modulators. We will see the advantages and disadvantages of the technique, especially for spectroscopic applications. We will also see the benefits of nonlinear phenomena in optical fibers to improve the experimental setup. Then, we show how the spectral range of the spectrometer can be extended around 2~µm, either by direct electro-optic modulation, or by frequency conversion in specific optical fibers.Finally, we will see the possibility to reach the mid-infrared by using nonlinear crystals. This last spectral extension will allow us to probe a spectral region highly suitable for spectroscopy, and hence to realise specific applications such as exhaled breath analysis
Igbonacho, Bici Chinauyi Junior. "Génération de molécules de solitons, régulation de puissance, régénération et sculpture des profils d'impulsion au sein d'un laser à fibre multifonction." Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCK024/document.
Full textThe work of this thesis strives to provide a solution to the persistent problem of poverty of mode-locked fiber lasers, in terms of functionality and flexibility. The thesis proposes a fiber-laser cavity having the specificity of being multifunctional. The cavity is equipped with tunable components, which provide the flexibility to realize functions ranging from the generation of pulses with complex profiles (solitons, bi-solitons, tri-solitons, etc.) up to the carving of pulse profiles, passing through the regulation of peak powers, and the regeneration of severely degraded intensity profiles. The laser cavity that we propose has the specificity of being controlled by a key component, which is a multifunctional nonlinear optical loop mirror (NOLM). We have designed this NOLM by making structural modifications in the usual architecture of this device, and by adding to it: a dispersion compensating fiber, a bandpass filter with tunable bandwidth, and an amplifier (preceded by a gain flattening filter, as needed) with tunable gain. These two parameters make it possible to adjust its transfer function, and thus to increase its functionalities and its flexibility. Thus, in addition to its role as a trigger for mode locking, this NOLM performs essential optical functions such as the regeneration of strongly degraded intensity profiles; which contributes to strengthening the stability of the laser.We also show the possibility of regulating the pulse peak power by locking it around a predefined value. Finally, we show that the multifunction laser offers the possibility to carve pulse profiles, that is, to generate pulses endowed with a peak power and a temporal width set in advance through an appropriate adjustment of the NOLM control parameters. The applications targeted by this multifunction laser are those requiring pulses with finely tunable peak power and temporal width. These activities, include the pulse reshaping in Telecoms, operations of compression or stretching of pulse profiles, optical component diagnostics, and non-destructive control of transmission lines
Macé, Jean-Sébastien. "Modélisation du fonctionnement d’un gyrolaser He-Ne de très haute précision." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112160/document.
Full textRing laser gyros (RLG) are inertial sensors whose reliability and accuracy have been recognised since the mid-1980s. Their high sensitivity enables them to measure angular velocity with an accuracy of 10⁻³ °/ h in aeronautics. However, because of a complex functioning based on a rich and varied physics, their performances are highly dependent on the working conditions and on any modification in the manufacturing process. In this case, a numerical modelling is pertinent since it allows both a clear understanding of the ring laser physics and parametric studies which are not experimentally feasible. The global modelling of a He-Ne RLG has been the main objective of the collaboration between Sagem (Safran group), which is one of the world leader in the inertial sensors field, and the Gas and Plasma Physics Laboratory (LPGP).This modelling is “multi-physics” since RLG physics involves several disciplines (plasma, atomic and laser physics). Therefore we have developed three models specifically adapted to each field. The first one describes the modelling of the positive column of the glow discharge following a fluid approach. This model allows a quantitative description of the plasma and gives access to fundamental quantities like the electron density or the electron energy distribution function. These quantities are the required inputs for the second model which treats the kinetics of the excited states inside the He-Ne plasma. For this, a collisional-radiative model in a radial geometry (1D-CRM) has been developed. The radial geometry is justified by the importance of the transport processes of atoms and radiations which can influence the radial profile of the population inversion. Notably, the radiative transfer by self-absorption of the resonant radiative transitions has been modelled by solving the Holstein-Biberman equation by a Monte-Carlo method. This aspect is a major component of this PhD work. Diffusion of excited atoms inside the plasma has also been taken into account by solving the diffusion equation with different boundary conditions at the capillary surface. From the populations and the kinetic rates computed by 1D-CRM, the laser amplification inside the cavity has been modelled using a two-level Maxwell-Bloch approach (NADIA) taking into account the inhomogeneous gain saturation, which means to consider the thermal speed of the atoms in the direction of propagation of the laser beams. The kinetics of NADIA has been optimized and transport processes in the phase space have also been implemented. This model has been used to study the performances of the RLG linked to the amplifying medium and to derive the physical parameters needed for the development of a simulator.Concerning this simulator, a simplified physical model from NADIA has been coupled to system modules in order to reproduce the operating signal of a RLG. This allows to conduct parametric studies on the quantities defining the RLG performance in particular the dynamic bias and the so-called “Random Walk”. We showed notably that the results of our simulator are in good agreement with experimental measurements in operating conditions. Moreover, our results show that this simulator is a powerful tool for analysing experimental data
Noble, Jeffrey Scott, and Jeffrey Scott Noble. "Laser Gyroscope based on Synchronously Pumped Bidirectional Fiber Optical Parametric Oscillator." Thesis, The University of Arizona, 2017. http://hdl.handle.net/10150/625701.
Full textMackintosh, James Macrae. "Rayleigh backscatter noise in the fibre optic gyroscope." Thesis, University of Strathclyde, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303353.
Full textNaftaly, Mira. "Mode locking in the ring laser gyroscope : reduced threshold for two cavity modes." Thesis, Brunel University, 1990. http://bura.brunel.ac.uk/handle/2438/7277.
Full textGupta, Jay Prakash. "Fabrication and characterization of gallium arsenide/aluminum gallium arsenide semiconductor ring laser for realization of miniature gyroscope." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 87 p, 2008. http://proquest.umi.com/pqdweb?did=1654493861&sid=2&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textStudený, Jakub. "Rozšíření funkcionality lokátoru pro poziční systém reálného času." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-401018.
Full textTian, Wei. "Modeling and Data Analysis of Large Ring Laser Gyroscopes." Doctoral thesis, 2013. https://tud.qucosa.de/id/qucosa%3A27379.
Full textRing laser gyroscopes measure inertial rotations locally and in real-time without the need for an external reference system. Initially, they were developed for aircraft navigation applications in the 1970s. With the improvement of ring laser technology during the last decades large ring laser gyroscopes (RLGs) are nowadays used as independent geodetic instruments. Due to the achievable accuracy more and more geophysical signals become observable in the data. The G-ring located at the Geodetic Observatory Wettzell is reckoned as the most stable one amongst the running large RLGs and reaches a sensitivity of 1.2 x 10 -11 nrad. Therefore, the instrument is able to detect a tilt signal of 1 nrad (equivalent to a signal of 0.2 mas in polar motion or 10 -9 Ω0 in variation of Earth rotation rate) in the diurnal and semi-diurnal band. This motivates us to improve previous geophysical models and estimate associated tilt and Earth rotation signals, which are the focuses of this Thesis. Firstly, we construct three local proper topocentric reference frames and interpret the Sagnac effect observed by large RLGs in the first post-Newtonian (PN) approximation of Einstein's theory of gravity. Secondly, in Chapter 3 we develop an improved orientation model for the Sagnac platform, based on the numerical results of Dehant et al. (1999). A missing tilt term in previous RLG tilt models is found. In Chapter 4, based on the Euler-Liouville equations or nutation transfer functions for a rigid Earth, a purely elastic Earth, a two-layered Earth and a three-layered Earth, five retrograde diurnal polar motion models are computed with the HW95 tidal potential catalogue. Thirdly, ocean tide effects (two aspects: effects on sub-daily variations of Earth rotation and loading effect on tilt) are considered in Chapter 5. We show that the Sagnac signals induced by ocean tides are larger than 10 -9 Δf0 (Δf0 348 Hz for the G-ring) and their influences are visible in the G-ring. Fourthly, based on the above-mentioned improved models and 168 days (from Apr.30 to Oct.17 in 2010) of G-ring data, in the diurnal band, we estimate the retrograde diurnal polar motion signal with an accuracy of 0.15 mas. The Earth tide software ETERNA 3.40 was adopted and modified to analyse this data. Our estimation provides one more evidence for the existence of the Earth's fluid outer core. Furthermore, we found that the tidal parameters for the G-ring are affected by the cavity and topographic effects in the semi-diurnal band. The local air pressure record is used in order to investigate the atmospheric loading effect on the G-ring by a simple regression model. Nevertheless, the preliminary result shows that no significant influence from atmospheric loading on our estimation is found. This Thesis closes with a summary of the obtained results, conclusions and suggestions how the analysis of ring laser data could be improved in future work.
Kumar, Pradeep. "Design, Analysis and Development of Sensor Coil for Fiber Optics Gyroscope." Thesis, 2011. http://etd.iisc.ernet.in/2005/3910.
Full textLai, Yu-Hung. "Microresonator Brillouin Laser Gyroscope." Thesis, 2019.
Find full textOptical Gyroscopes are among the most accurate rotation-measuring devices and are widely used for navigation and accurate compasses. With the advent of integrated photonics for complex telecommunication chips, there has been interest in the possibility of chip-scale optical gyroscopes. Besides the potential benefits of miniaturization, such solid-state systems would be robust and resistant to shock. In this thesis, we investigate a chip-based optical gyroscope using counter-propagating Brillouin lasers on a monolithic silicon chip. The near-degenerate lasers mimic a commercial ring laser gyroscope including the existence of a locking band. By using physical properties associated with the Brillouin process, a solid-state unlocking method is demonstrated. We focus on three topics to explore the potential of the counter-propagating Brillouin-laser gyroscope. First, we explore the physics of the counter-propagating Brillouin lasers by deriving the theory to link the passive cavity mode with the lasing gain medium. We explicitly show how the dispersion, Kerr nonlinearity, dissipative coupling, and Sagnac sensing affect the beating frequency of the Brillouin lasers. Second, we experimentally demonstrate the performance of the gyroscope. Most notably, the gyroscope is used to measure the rotation of the Earth, representing an important milestone for chip-scale optical gyroscopes. Third, we investigate the non-Hermitian interaction between the counter-propagating Brillouin lasers. We test the recent prediction of the EP-enhanced Sagnac effect, and observe a Sagnac scale factor boost by over 4X by measurement of rotations applied to the resonator. Our research shows the feasibility of the chip-based Brillouin laser gyroscope. This gyroscope paves the way towards an all-optical inertial guidance system.
SHIH, CHIH-HSIEN, and 施志賢. "The Study of Fiber Ring Laser Gyroscope and Its Measurement Characteristic." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/t4wt99.
Full text國立高雄大學
電機工程學系碩士班
104
In this thesis, we demonstrated a fiber laser gyroscope which integrated with the fiber Bragg grating interrogating system and is able to achieve reliable angular speed detection. A homemade rotating table with computer controlled was made and to characterize performance of the fiber laser gyroscope such as response of the angular speeds, modulation frequency of the fiber ring laser, applied voltage of the EO modu-lator used, area of the fiber gyroscope loop and shifting of the fiber grating used in fiber ring laser. In addition, experiments of off center rotation with longer fiber length was verified and showed that this fiber gyroscope system is able to achieve slow rotation detection of an remote object with good signal stability and accuracy and can be applied to environmental and safety monitoring of civil engineering struc-tures.
Hsiao, Ching-Chuan, and 蕭景全. "The Study of Fiber Ring Laser Gyroscope and Its Performance of Angular Velocity Measurement." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/63193065113736599662.
Full text國立高雄大學
電機工程學系碩士班
103
In this thesis, we demonstrated a fiber ring laser gyroscope which combined with fiber Bragg grating sensor (FBG) and fiber optic gyroscope (FOG) in a system. By using the fiber ring laser structure, it can increase the strength of the source signal and enhance the stability of angular speed measurement. We compare two configuration of the fiber ring laser gyroscope with its signal characteristics and measurement stability. In addition, we also discuss the factors of modulation frequency, minimum angular velocity, and the variation of wavelength displacement of the fiber Bragg grating to the measurements of the fiber ring laser gyroscope. It shows that fiber ring laser gyroscope has effective sensing technique of angular speed measurement and is potential to apply it in environmental sensing and civil engineering structure monitoring.