Journal articles on the topic 'Laser melting deposition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Laser melting deposition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Seto, Naoki, and Hiroshi Sato. "Deposition Conditions for Laser Formation Processes with Filler Wire." International Journal of Automation Technology 10, no. 6 (2016): 899–908. http://dx.doi.org/10.20965/ijat.2016.p0899.
Full textZheng, Huadong, Caidong Wang, Zhigen Fei, Lumin Chen, and Yan Cheng. "Robot posture generation method for laser melting deposition." Industrial Robot: the international journal of robotics research and application 47, no. 6 (2020): 859–66. http://dx.doi.org/10.1108/ir-04-2020-0069.
Full textSoane, Nicholas, Andrew Cockburn, Martin Sparkes, and William O’Neill. "Deposition of Self-Lubricating Coatings via Supersonic Laser Deposition (SLD)." Coatings 12, no. 6 (2022): 760. http://dx.doi.org/10.3390/coatings12060760.
Full textYingchun, Guan, Zhou Wei, Zheng Hongyu, Li Zhongli, Seng Hwee Leng, and Hong Minghui. "Analysis of selective vaporization behavior in laser melting of magnesium alloy by plume deposition." Laser and Particle Beams 32, no. 1 (2013): 49–54. http://dx.doi.org/10.1017/s0263034613000608.
Full textWu, Yongjian, Jian Zhou, Yan Wen, and Lechun Xie. "Investigation on Transport Phenomena and Molten Pool Dynamics During Laser Melting Deposition of Ti-6Al-4V." Journal of Physics: Conference Series 2795, no. 1 (2024): 012021. http://dx.doi.org/10.1088/1742-6596/2795/1/012021.
Full textTsvetkova, E., K. Bazaleeva, A. Smirnov, and I. Chekin. "Nitriding of martensitic steel after laser melting deposition." Journal of Physics: Conference Series 1109 (November 2018): 012054. http://dx.doi.org/10.1088/1742-6596/1109/1/012054.
Full textZheng, G., R. Laqua, P. Rey, et al. "Influence of nanoparticles on melting and solidification during a Directed Energy Deposition process analysed by simulation." IOP Conference Series: Materials Science and Engineering 1274, no. 1 (2023): 012017. http://dx.doi.org/10.1088/1757-899x/1274/1/012017.
Full textJiang, Wenbiao, M. Grant Norton, Lancy Tsung, and J. Thomas Dickinson. "Pulsed-laser deposition of polytetrafluoroethylene." Journal of Materials Research 10, no. 4 (1995): 1038–43. http://dx.doi.org/10.1557/jmr.1995.1038.
Full textLee, S. H., T. D. Kil, S. W. Han, and Y. H. Moon. "Effect of Powder Morphology on the Deposition Quality for Direct Laser Melting." Transactions of Materials Processing 25, no. 3 (2016): 195–202. http://dx.doi.org/10.5228/kstp.2016.25.3.195.
Full textChioibasu, Diana, Alexandru Achim, Camelia Popescu, et al. "Prototype Orthopedic Bone Plates 3D Printed by Laser Melting Deposition." Materials 12, no. 6 (2019): 906. http://dx.doi.org/10.3390/ma12060906.
Full textMahmood, Muhammad Arif, Asif Ur Rehman, Fatih Pitir, Metin Uymaz Salamci, and Ion N. Mihailescu. "Laser Melting Deposition Additive Manufacturing of Ti6Al4V Biomedical Alloy: Mesoscopic In-Situ Flow Field Mapping via Computational Fluid Dynamics and Analytical Modelling with Empirical Testing." Materials 14, no. 24 (2021): 7749. http://dx.doi.org/10.3390/ma14247749.
Full textMihai, S., D. Chioibasu, A. C. Popescu, et al. "Obtaining Metal-Ceramic Layers by Laser Cladding using Alumina Powder Mixtures." Annals of Dunarea de Jos University of Galati Fascicle XII Welding Equipment and Technology 35 (December 13, 2024): 25–35. https://doi.org/10.35219/awet.2024.02.
Full textSing, Swee Leong, Wai Yee Yeong, Florencia Edith Wiria, et al. "Direct selective laser sintering and melting of ceramics: a review." Rapid Prototyping Journal 23, no. 3 (2017): 611–23. http://dx.doi.org/10.1108/rpj-11-2015-0178.
Full textSu, Pengsheng, Hao Yang, Linping Zhang, Yuewen Zhai, Yuhan Ge, and Xiaozhi Yang. "The research on the geometrical characteristics and microstructure of the cladding track of DZ125L Nickel-based alloy deposited by laser metal direct deposition." Journal of Physics: Conference Series 2819, no. 1 (2024): 012026. http://dx.doi.org/10.1088/1742-6596/2819/1/012026.
Full textMa, Ruixin, Zhanqi Liu, Wenbo Wang, Guojian Xu, and Wei Wang. "Laser deposition melting of TC4/TiAl functionally graded material." Vacuum 177 (July 2020): 109349. http://dx.doi.org/10.1016/j.vacuum.2020.109349.
Full textLi, Zeng Qiang, Jun Wang, and Qi Wu. "Molecular Dynamics Simulation of the Ablation Process in Ultrashort Pulsed Laser Machining of Polycrystalline Diamond." Advanced Materials Research 500 (April 2012): 351–56. http://dx.doi.org/10.4028/www.scientific.net/amr.500.351.
Full textMukin, D. V., Sergei Yu Ivanov, Ekaterina A. Valdaitseva, Gleb A. Turichin, and Alexander E. Beniash. "An Analytical Model for Filler Wire Heating and Melting during Wire Feed Laser Deposition." Key Engineering Materials 822 (September 2019): 431–37. http://dx.doi.org/10.4028/www.scientific.net/kem.822.431.
Full textBruzzo, Francesco, Guendalina Catalano, Ali Gökhan Demir, and Barbara Previtali. "Surface finishing by laser re-melting applied to robotized laser metal deposition." Optics and Lasers in Engineering 137 (February 2021): 106391. http://dx.doi.org/10.1016/j.optlaseng.2020.106391.
Full textRolink, Gesa, Sabrina Vogt, Lucia Senčekova, Andreas Weisheit, Reinhart Poprawe, and Martin Palm. "Laser metal deposition and selective laser melting of Fe–28 at.% Al." Journal of Materials Research 29, no. 17 (2014): 2036–43. http://dx.doi.org/10.1557/jmr.2014.131.
Full textUr Rehman, Asif, Muhammad Arif Mahmood, Fatih Pitir, Metin Uymaz Salamci, Andrei C. Popescu, and Ion N. Mihailescu. "Mesoscopic Computational Fluid Dynamics Modelling for the Laser-Melting Deposition of AISI 304 Stainless Steel Single Tracks with Experimental Correlation: A Novel Study." Metals 11, no. 10 (2021): 1569. http://dx.doi.org/10.3390/met11101569.
Full textRizwan, Muhammad, and Rafi Ullah. "Microstructural evolution along the build height of laser melting deposited TA15 alloy." Journal of Physics: Conference Series 2076, no. 1 (2021): 012049. http://dx.doi.org/10.1088/1742-6596/2076/1/012049.
Full textMa, Liang, Xiangwei Kong, Jingjing Liang, et al. "Thermal and Mechanical Variation Analysis on Multi-Layer Thin Wall during Continuous Laser Deposition, Continuous Pulsed Laser Deposition, and Interval Pulsed Laser Deposition." Materials 15, no. 15 (2022): 5157. http://dx.doi.org/10.3390/ma15155157.
Full textHubler, Graham K. "Pulsed Laser Deposition." MRS Bulletin 17, no. 2 (1992): 26–29. http://dx.doi.org/10.1557/s0883769400040586.
Full textChokshi, Avnish, Rajdeep Singh Devra, N. Rahul, Madhu Vadali, and Soumyadip Sett. "Wettability patterning of titanium surfaces through pulsed laser melting for enhanced condensation heat transfer." Journal of Physics: Conference Series 2766, no. 1 (2024): 012144. http://dx.doi.org/10.1088/1742-6596/2766/1/012144.
Full textRajput, Deepak, Lino Costa, Kathleen Lansford, George M. Murray, and WilliamH Hofmeister. "Laser-Assisted Deposition of Transition Metal Coatings on Graphite." REVIEWS ON ADVANCED MATERIALS SCIENCE 57, no. 2 (2018): 158–66. http://dx.doi.org/10.1515/rams-2018-0060.
Full textWang, Xiuhu. "Research Progress and Current Situation of Laser Additive Technology." Academic Journal of Science and Technology 2, no. 1 (2022): 186–88. http://dx.doi.org/10.54097/ajst.v2i1.984.
Full textYelistratov, A. P. "Peculiarities of laser cladding with feeding of the filler tape." Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY), no. 3 (October 5, 2018): 95–100. http://dx.doi.org/10.21122/1683-6065-2018-3-95-100.
Full textKolobov, Yu R., A. N. Prokhorov, S. S. Manokhin, A. Yu Tokmacheva-Kolobova, D. I. Serebryakov та V. V. Afanasiev. "Comparative study of structural phase condition and mechanical properties of Ni–Cr(X) и Fe–Cr(Х) heat-resistant alloys obtained using additive technologies". Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya (Universitiesʹ Proceedings. Powder Metallurgy аnd Functional Coatings), № 3 (16 вересня 2018): 76–86. http://dx.doi.org/10.17073/1997-308x-2018-3-76-86.
Full textFeng, Aixin, Chunlun Chen, Chengmeng Wu, Yacheng Wei, and Yu Wang. "Modeling of Laser Melting Deposition Equipment Based on Digital Twin." Metals 12, no. 2 (2022): 169. http://dx.doi.org/10.3390/met12020169.
Full textLi, Huidong, Yelin Xia, Min Xie, Chuan Shi, and Jianbo Lei. "Graphene nanoplatelets reinforced NiCu composite manufactured by laser melting deposition." Journal of Alloys and Compounds 929 (December 2022): 167261. http://dx.doi.org/10.1016/j.jallcom.2022.167261.
Full textMahmood, Muhammad Arif, Andrei C. Popescu, and Ion N. Mihailescu. "Metal Matrix Composites Synthesized by Laser-Melting Deposition: A Review." Materials 13, no. 11 (2020): 2593. http://dx.doi.org/10.3390/ma13112593.
Full textLiu, Qi, Yudai Wang, Hang Zheng, Kang Tang, Huaixue Li, and Shuili Gong. "TC17 titanium alloy laser melting deposition repair process and properties." Optics & Laser Technology 82 (August 2016): 1–9. http://dx.doi.org/10.1016/j.optlastec.2016.02.013.
Full textSun, Jin, and Singare Sekou. "Investigation on the Process Characteristics of Laser Cladding Fabrication Using 45 Carbon Steel Wire." Advanced Materials Research 499 (April 2012): 147–51. http://dx.doi.org/10.4028/www.scientific.net/amr.499.147.
Full textAssefa, Tadesse A., Yue Cao, Soham Banerjee, et al. "Ultrafast x-ray diffraction study of melt-front dynamics in polycrystalline thin films." Science Advances 6, no. 3 (2020): eaax2445. http://dx.doi.org/10.1126/sciadv.aax2445.
Full textBruzzo, Francesco, Guendalina Catalano, Ali Gökhan Demir, and Barbara Previtali. "In-Process Laser Re-Melting of Thin Walled Parts to Improve Surface Quality after Laser Metal Deposition." Key Engineering Materials 813 (July 2019): 191–96. http://dx.doi.org/10.4028/www.scientific.net/kem.813.191.
Full textBai, Lin Rui, Guo Min Le, Jin Feng Li, Xue Liu, and Xiu Yan Li. "Effects of Process Parameters on Morphologies and Microstructures of Laser Melting Deposited V-5Cr-5Ti Alloys." Materials Science Forum 913 (February 2018): 227–34. http://dx.doi.org/10.4028/www.scientific.net/msf.913.227.
Full textAngelastro, Andrea, Sabina L. Campanelli, Giuseppe Casalino, Antonio D. Ludovico, and Simone Ferrara. "A Methodology for Optimization of the Direct Laser Metal Deposition Process." Key Engineering Materials 473 (March 2011): 75–82. http://dx.doi.org/10.4028/www.scientific.net/kem.473.75.
Full textCui, X., S. Zhang, C. H. Zhang, J. Chen, J. B. Zhang, and S. Y. Dong. "A comparison on microstructure features of 24CrNiMo low alloy steel prepared by selective laser melting and laser melting deposition." Vacuum 191 (September 2021): 110394. http://dx.doi.org/10.1016/j.vacuum.2021.110394.
Full textHagemann, Simon, Alexander Mattes, and Marc-André Weber. "Kostenbewertung des Laser-Pulver-Auftragsschmelzens." Zeitschrift für wirtschaftlichen Fabrikbetrieb 119, no. 7-8 (2024): 525–28. http://dx.doi.org/10.1515/zwf-2024-1103.
Full textSchaible, Jonathan, David Hausch, Thomas Schopphoven, and Constantin Häfner. "Deposition strategies for generating cuboid volumes using extreme high-speed directed energy deposition." Journal of Laser Applications 34, no. 4 (2022): 042034. http://dx.doi.org/10.2351/7.0000770.
Full textZhang, Kai, and Xiao Feng Shang. "Microstructure and Properties of Thin-Wall Part by Laser Metal Deposition Shaping." Materials Science Forum 675-677 (February 2011): 563–66. http://dx.doi.org/10.4028/www.scientific.net/msf.675-677.563.
Full textBi, Jian, Hongxin Sun, and Yan Wen. "Research on microstructure variation of laser melting deposition Ti-6Al-4V under electroshocking treatment." Journal of Physics: Conference Series 2566, no. 1 (2023): 012095. http://dx.doi.org/10.1088/1742-6596/2566/1/012095.
Full textZahiri, Saden H., Stefan Gulizia, and Leon Prentice. "An Overview of Cold Spray Additive Technology in Australia for Melt-less Manufacture of Titanium." MATEC Web of Conferences 321 (2020): 03011. http://dx.doi.org/10.1051/matecconf/202032103011.
Full textErdakov, Ivan, Lev Glebov, Kirill Pashkeev, et al. "Effect of the Ti6Al4V Alloy Track Trajectories on Mechanical Properties in Direct Metal Deposition." Machines 8, no. 4 (2020): 79. http://dx.doi.org/10.3390/machines8040079.
Full textVinnakota, Raj K., and Dentcho A. Genov. "Surface plasmon induced enhancement in selective laser melting processes." Rapid Prototyping Journal 25, no. 6 (2019): 1135–43. http://dx.doi.org/10.1108/rpj-06-2018-0146.
Full textTrevisan, Francesco, Flaviana Calignano, Alberta Aversa, et al. "Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications." Journal of Applied Biomaterials & Functional Materials 16, no. 2 (2017): 57–67. http://dx.doi.org/10.5301/jabfm.5000371.
Full textSchneider, J., A. Seidel, J. Gumpinger, et al. "Advanced manufacturing approach via the combination of selective laser melting and laser metal deposition." Journal of Laser Applications 31, no. 2 (2019): 022317. http://dx.doi.org/10.2351/1.5096123.
Full textPetrat, Torsten, Robert Kersting, Benjamin Graf, and Michael Rethmeier. "Embedding electronics into additive manufactured components using laser metal deposition and selective laser melting." Procedia CIRP 74 (2018): 168–71. http://dx.doi.org/10.1016/j.procir.2018.08.071.
Full textSaini, Vijay Kumar, Jinoop Arackal Narayanan, Niraj Sinha, and Christ Prakash Paul. "Preliminary Parametric Investigations into Macro-Laser Polishing of Laser-Directed Energy Deposition of SS 304L Bulk Structures." Crystals 13, no. 11 (2023): 1604. http://dx.doi.org/10.3390/cryst13111604.
Full textKotoban, Dmitry Valerievich, Aleksey Petrovich Nazarov, and Igor Vladimirovich Shishkovsky. "Comparative Study of Selective Laser Melting and Direct Laser Metal Deposition of Ni3Al Intermetallic Alloy." Materials Science Forum 834 (November 2015): 103–11. http://dx.doi.org/10.4028/www.scientific.net/msf.834.103.
Full text