Academic literature on the topic 'Laser plasma accelerator'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Laser plasma accelerator.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Laser plasma accelerator"

1

Ogata, Atsushi, and Kazuhisa Nakajima. "Recent progress and perspectives of laser–plasma accelerators." Laser and Particle Beams 16, no. 2 (June 1998): 381–96. http://dx.doi.org/10.1017/s0263034600011654.

Full text
Abstract:
Recent progress in laser-plasma accelerators has matured a concept of particle acceleration as a possible next-generation particle accelerator promising ultrahigh accelerating gradients in a compact size. Four major concepts of laser-plasma accelerators—the plasma beat wave accelerator, the laser wakefield accelerator, the self-modulated laser wakefield accelerator, and the plasma wakefield accelerator—are reviewed on accelerator physics issues and experiments demonstrating the basic mechanisms of their concepts. As a perspective to the future practical application, a design of 5-TeV linear colliders based on the laser wakefield accelerator is discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Bingham, Robert. "Basic concepts in plasma accelerators." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1840 (February 2006): 559–75. http://dx.doi.org/10.1098/rsta.2005.1722.

Full text
Abstract:
In this article, we present the underlying physics and the present status of high gradient and high-energy plasma accelerators. With the development of compact short pulse high-brightness lasers and electron and positron beams, new areas of studies for laser/particle beam–matter interactions is opening up. A number of methods are being pursued vigorously to achieve ultra-high-acceleration gradients. These include the plasma beat wave accelerator (PBWA) mechanism which uses conventional long pulse (∼100 ps) modest intensity lasers ( I ∼10 14 –10 16 W cm −2 ), the laser wakefield accelerator (LWFA) which uses the new breed of compact high-brightness lasers (<1 ps) and intensities >10 18 W cm −2 , self-modulated laser wakefield accelerator (SMLWFA) concept which combines elements of stimulated Raman forward scattering (SRFS) and electron acceleration by nonlinear plasma waves excited by relativistic electron and positron bunches the plasma wakefield accelerator. In the ultra-high intensity regime, laser/particle beam–plasma interactions are highly nonlinear and relativistic, leading to new phenomenon such as the plasma wakefield excitation for particle acceleration, relativistic self-focusing and guiding of laser beams, high-harmonic generation, acceleration of electrons, positrons, protons and photons. Fields greater than 1 GV cm −1 have been generated with monoenergetic particle beams accelerated to about 100 MeV in millimetre distances recorded. Plasma wakefields driven by both electron and positron beams at the Stanford linear accelerator centre (SLAC) facility have accelerated the tail of the beams.
APA, Harvard, Vancouver, ISO, and other styles
3

Polozov, Sergey M., and Vladimir I. Rashchikov. "Simulation studies of beam dynamics in 50 MeV linear accelerator with laser-plasma electron gun." Cybernetics and Physics, Volume 10, 2021, Number 4 (December 31, 2021): 260–70. http://dx.doi.org/10.35470/2226-4116-2021-10-4-260-270.

Full text
Abstract:
Conventionally, electron guns with thermionic cathodes or field-emission cathodes are used for research or technological linear accelerators. RF-photoguns are used to provide the short electron bunches which could be used for FEL’s of compact research facilities to generate monochromatic photons. Low energy of emitted electrons is the key problem for photoguns due to high influence of Coulomb field and difficulties with the first accelerating cell simulation and construction. Contrary, plasma sources, based on the laser-plasma wakefield acceleration, have very high acceleration gradient but rather broad energy spectrum compared with conventional thermoguns or field-emission guns. The beam dynamics in the linear accelerator combines the laser-plasma electron source and conventional RF linear accelerator is discussed in this paper. Method to capture and re-accelerate the short picosecond bunch with extremely broad energy spread (up to 50 %) is presented. Numerical simulation shows that such bunches can be accelerated in RF linear accelerator to the energy of 50 MeV with output energy spread not higher than 1 % .
APA, Harvard, Vancouver, ISO, and other styles
4

Schroeder, C. B., F. Albert, C. Benedetti, J. Bromage, D. Bruhwiler, S. S. Bulanov, E. M. Campbell, et al. "Linear colliders based on laser-plasma accelerators." Journal of Instrumentation 18, no. 06 (June 1, 2023): T06001. http://dx.doi.org/10.1088/1748-0221/18/06/t06001.

Full text
Abstract:
Abstract Laser-plasma accelerators are capable of sustaining accelerating fields of 10–100 GeV/m, 100–1000 times that of conventional technology and the highest fields produced by any of the widely researched advanced accelerator concepts. Laser-plasma accelerators also intrinsically accelerate short particle bunches, several orders of magnitude shorter than that of conventional technology, which leads to reductions in beamstrahlung and, hence, savings in the overall power consumption to reach a desired luminosity. These properties make laser-plasma accelerators a promising accelerator technology for a more compact, less expensive high-energy linear collider providing multi-TeV polarized leptons. In this submission to the Snowmass 2021 Accelerator Frontier, we discuss the motivation for a laser-plasma-accelerator-based linear collider, the status of the field, and potential linear collider concepts up to 15 TeV. We outline the research and development path toward a collider based on laser-plasma accelerator technology, and highlight near-term and mid-term applications of this technology on the collider development path. The required experimental facilities to carry out this research are described. We conclude with community recommendations developed during Snowmass.
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Dongyu, Tang Yang, Minjian Wu, Zhusong Mei, Kedong Wang, Chunyang Lu, Yanying Zhao, et al. "Introduction of Research Work on Laser Proton Acceleration and Its Application Carried out on Compact Laser–Plasma Accelerator at Peking University." Photonics 10, no. 2 (January 28, 2023): 132. http://dx.doi.org/10.3390/photonics10020132.

Full text
Abstract:
Laser plasma acceleration has made remarkable progress in the last few decades, but it also faces many challenges. Although the high gradient is a great potential advantage, the beam quality of the laser accelerator has a certain gap, or it is different from that of traditional accelerators. Therefore, it is important to explore and utilize its own features. In this article, some recent research progress on laser proton acceleration and its irradiation application, which was carried out on the compact laser plasma accelerator (CLAPA) platform at Peking University, have been introduced. By combining a TW laser accelerator and a monoenergetic beamline, proton beams with energies of less than 10 MeV, an energy spread of less than 1%, and with several to tens of pC charge, have been stably produced and transported in CLAPA. The beamline is an object–image point analyzing system, which ensures the transmission efficiency and the energy selection accuracy for proton beams with large initial divergence angle and energy spread. A spread-out Bragg peak (SOBP) is produced with high precision beam control, which preliminarily proved the feasibility of the laser accelerator for radiotherapy. Some application experiments based on laser-accelerated proton beams have also been carried out, such as proton radiograph, preparation of graphene on SiC, ultra-high dose FLASH radiation of cancer cells, and ion-beam trace probes for plasma diagnosis. The above applications take advantage of the unique characteristics of laser-driven protons, such as a micron scale point source, an ultra-short pulse duration, a wide energy spectrum, etc. A new laser-driven proton therapy facility (CLAPA II) is being designed and is under construction at Peking University. The 100 MeV proton beams will be produced via laser–plasma interaction by using a 2-PW laser, which may promote the real-world applications of laser accelerators in malignant tumor treatment soon.
APA, Harvard, Vancouver, ISO, and other styles
6

Malka, V., J. Faure, Y. Glinec, and A. F. Lifschitz. "Laser–plasma accelerator: status and perspectives." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1840 (January 25, 2006): 601–10. http://dx.doi.org/10.1098/rsta.2005.1725.

Full text
Abstract:
Laser–plasma accelerators deliver high-charge quasi-monoenergetic electron beams with properties of interest for many applications. Their angular divergence, limited to a few mrad, permits one to generate a small γ ray source for dense matter radiography, whereas their duration (few tens of fs) permits studies of major importance in the context of fast chemistry for example. In addition, injecting these electron beams into a longer plasma wave structure will extend their energy to the GeV range. A GeV laser-based accelerator scheme is presented; it consists of the acceleration of this electron beam into relativistic plasma waves driven by a laser. This compact approach (centimetres scale for the plasma, and tens of meters for the whole facility) will allow a miniaturization and cost reduction of future accelerators and derived X-ray free electron laser (XFEL) sources.
APA, Harvard, Vancouver, ISO, and other styles
7

Leemans, Wim, Eric Esarey, Cameron Geddes, Carl Schroeder, and Csaba Tóth. "Laser guiding for GeV laser–plasma accelerators." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1840 (January 25, 2006): 585–600. http://dx.doi.org/10.1098/rsta.2005.1724.

Full text
Abstract:
Guiding of relativistically intense laser beams in preformed plasma channels is discussed for development of GeV-class laser accelerators. Experiments using a channel guided laser wakefield accelerator at Lawrence Berkeley National Laboratory (LBNL) have demonstrated that near mono-energetic 100 MeV-class electron beams can be produced with a 10 TW laser system. Analysis, aided by particle-in-cell simulations, as well as experiments with various plasma lengths and densities, indicate that tailoring the length of the accelerator, together with loading of the accelerating structure with beam, is the key to production of mono-energetic electron beams. Increasing the energy towards a GeV and beyond will require reducing the plasma density and design criteria are discussed for an optimized accelerator module. The current progress and future directions are summarized through comparison with conventional accelerators, highlighting the unique short-term prospects for intense radiation sources based on laser-driven plasma accelerators.
APA, Harvard, Vancouver, ISO, and other styles
8

Kiani, Leily, Tong Zhou, Seung-Whan Bahk, Jake Bromage, David Bruhwiler, E. Michael Campbell, Zenghu Chang, et al. "High average power ultrafast laser technologies for driving future advanced accelerators." Journal of Instrumentation 18, no. 08 (August 1, 2023): T08006. http://dx.doi.org/10.1088/1748-0221/18/08/t08006.

Full text
Abstract:
Abstract Large scale laser facilities are needed to advance the energy frontier in high energy physics and accelerator physics. Laser plasma accelerators are core to advanced accelerator concepts aimed at reaching TeV electron electron colliders. In these facilities, intense laser pulses drive plasmas and are used to accelerate electrons to high energies in remarkably short distances. A laser plasma accelerator could in principle reach high energies with an accelerating length that is 1000 times shorter than in conventional RF based accelerators. Notionally, laser driven particle beam energies could scale beyond state of the art conventional accelerators. LPAs have produced multi GeV electron beams in about 20 cm with relative energy spread of about 2 percent, supported by highly developed laser technology. This validates key elements of the US DOE strategy for such accelerators to enable future colliders but extending best results to date to a TeV collider will require lasers with higher average power. While the per pulse energies envisioned for laser driven colliders are achievable with current lasers, low laser repetition rates limit potential collider luminosity. Applications will require rates of kHz to tens of kHz at Joules of energy and high efficiency, and a collider would require about 100 such stages, a leap from current Hz class LPAs. This represents a challenging 1000 fold increase in laser repetition rates beyond current state of the art. This whitepaper describes current research and outlook for candidate laser systems as well as the accompanying broadband and high damage threshold optics needed for driving future advanced accelerators.
APA, Harvard, Vancouver, ISO, and other styles
9

MALKA, V., A. F. LIFSCHITZ, J. FAURE, and Y. GLINEC. "GeV MONOENERGETIC ELECTRON BEAM WITH LASER PLASMA ACCELERATOR." International Journal of Modern Physics B 21, no. 03n04 (February 10, 2007): 277–86. http://dx.doi.org/10.1142/s0217979207042057.

Full text
Abstract:
Laser plasma accelerators produce today ultra short, quasi-monoenergetic and collimated electron beams with potential applications in material science, chemistry and medicine. The laser plasma accelerator used to produce such an electron beam is presented. The design of a laser based accelerator designed to produce more energetic electron beams with a narrow relative energy spread is also proposed here. This compact approach should permit a miniaturization and cost reduction of future accelerators and associated X-Free Electrons Lasers (XFEL).
APA, Harvard, Vancouver, ISO, and other styles
10

Ebrahim, N. A., and S. R. Douglas. "Acceleration of particles by relativistic electron plasma waves driven by the optical mixing of laser light in a plasma." Laser and Particle Beams 13, no. 1 (March 1995): 147–71. http://dx.doi.org/10.1017/s0263034600008910.

Full text
Abstract:
Electron acceleration by relativistic electron plasma waves is studied by theory and particle simulations. The maximum acceleration that can be obtained from this process depends on many different factors. This paper presents a study of how these various factors impact on the acceleration mechanism. Although particular reference is made to the laser plasma beatwave concept, the study is equally relevant to the acceleration of particles in the plasma wakefield accelerator and the laser wakefield accelerator.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Laser plasma accelerator"

1

Kneip, Stefan. "Laser plasma accelerator and wiggler." Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/5671.

Full text
Abstract:
This thesis details experimental research of laser-driven electron acceleration from underdense plasmas and the characterisation of the x-ray radiation owing to the transverse oscillatory motion that electrons perform during the acceleration process. Acceleration of monoenergetic electron beams to the GeV level was achieved for the first time in a self-guiding, self-injecting wakefield accelerator in the nonlinear regime, driven by the 200 TW Astra Gemini laser. The laser pulse was shown to be self-guided for 1 cm or more than ten times its Rayleigh range, by measurement of a single filament containing > 30% of the initial laser energy at this distance. The intensity in the guided filament is amplified beyond its initial value, as suggested by the GeV electron energy gain. Three dimensional numerical modeling is in excellent agreement with the experimental findings. In this regime, a beam of tens of keV x-rays emanating from a micrometer source with milliradian divergence, spatial coherence and a peak brightness comparable to third generation light sources was measured on experiments with the 100 TW Hercules laser. The measurements show that, due to their small transverse oscillations, the electron trajectories and their radiation properties resemble the scenario of an electron in a wiggler-type insertion device, with a strength parameter K close to 1. The experimental findings are supported by three dimensional modeling of the electron and x-ray beam. Betatron radiation was also measured with ten times longer and more intense pulses from the Vulcan Petawatt laser. In this case, electron acceleration is strongly driven transversely by the laser and a betatron resonance leads to a tenfold increase in oscillation amplitude. This alters the characteristics of the emitted synchrotron radiation fundamentally, increasing 50-fold the strength parameter and divergence, 10-fold the source size and up to 5-fold the x-ray energy, thereby broadening the electron energy distribution and converting up to 5% of their energy into x-rays. The studies provide evidence for the scalability of self-guided laser wakefield accelerators from 0.1 to 1 GeV. Furthermore the work demonstrates that betatron radiation can help to understand the acceleration process and has characteristics comparable to conventional synchrotron light.
APA, Harvard, Vancouver, ISO, and other styles
2

Maitrallain, Antoine. "Accélération laser-plasma : mise en forme de faisceaux d’électrons pour les applications." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS314/document.

Full text
Abstract:
L'accélération laser plasma (ALP) est le produit de l'interaction non linéaire entre un faisceau laser intense (≈10¹⁸ W/cm²) et une cible gazeuse. Sous certaines conditions, l’onde plasma générée peut piéger et accélérer des électrons jusqu’à des énergies très importantes grâce à des champs accélérateurs élevés (≈ 50 GV/m). Ce processus très prometteur fait l'objet de nombreux travaux au sein de la communauté, qui, après avoir identifié les mécanismes de base, cherche aujourd’hui à améliorer les propriétés de la source (énergie, divergence, reproductibilité...).Les applications de ces faisceaux d'électrons issus de sources ultra-compactes sont variées. Parmi celles-ci, la physique des hautes énergies pour laquelle a été conçu le schéma d'accélération multi-étages. Il s’agit d’un concept basé sur la succession d’étages accélérateurs pour répondre à la problématique de l’augmentation de la longueur d’accélération en vue d’augmenter l’énergie des électrons. Dans sa version de base, un premier étage (injecteur) fournit un faisceau d'électrons d'énergie modérée doté d’une charge très importante. Ce faisceau est alors accéléré vers de plus hautes énergies dans un second étage appelé accélérateur. Cette thèse s'inscrit dans une série de travaux préliminaires aux expériences d'accélération laser-plasma double étages prévues sur la plateforme expérimentale CILEX autour du laser APOLLON 10 PW.Dans ce cadre, une nouvelle cible a été conçue et caractérisée avec le laser UHI100. Les propriétés du faisceau d'électrons ont ensuite été modifiées par mise en forme optique du faisceau laser produisant l'onde de plasma, ainsi que par mise en forme magnétique.Ce dernier dispositif nous a permis de pouvoir utiliser la source pour une application visant à mettre au point un système de dosimétrie adapté au fort débit de dose associé aux électrons issus de l'ALP
Laser plasma acceleration (LPA) comes from the nonlinear interaction between an intense laser beam (≈10¹⁸ W/cm²) and a gas target. The plasma wave which is generated can, trap and accelerate electrons to very high energies due to large accelerating fields (≈ 50 GV/m). Numerous studies have been done on this promising process among our scientific community aiming at understanding the basic mechanisms involved. As a second step, we now try tries to improve the properties of the source (energy, divergence, reproducibility…).Such ultra-compact electronic sources can be used for various applications. Among them, high energy physics for which a specific scheme was designed, based on the multi-stage acceleration. The scheme relies on the addition of successive accelerating modules to increase the effective accelerating length and therefore the final electron energy. In its basic version, a first stage (injector) delivers an electron beam at moderate energy including a high charge. This beam is then further accelerated to high energy through a second stage (accelerator). This thesis is part of preliminary studies performed to prepare the future 2-stages laser plasma accelerator that will be developed on platform CILEX with APOLLON 10 PW laser.In this context, a new target has been designed and characterized with the UHI100 laser. Then the electron beam properties have been adjusted by optical shaping of the laser generating the plasma wave, and also by magnetic shaping.The electron beam, magnetically shaped, has been used for a specific application devoted to the set-up of a new dosimetric diagnostic, dedicated to the measurement of high dose rate delivered by these electrons from LPA
APA, Harvard, Vancouver, ISO, and other styles
3

Bajlekov, Svetoslav. "Towards a free-electron laser driven by electrons from a laser-wakefield accelerator : simulations and bunch diagnostics." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:99f9f13a-d0c2-4dd8-a9a4-13926621c352.

Full text
Abstract:
This thesis presents results from two strands of work towards realizing a free-electron laser (FEL) driven by electron bunches generated by a laser-wakefield accelerator (LWFA). The first strand focuses on selecting operating parameters for such a light source, on the basis of currently achievable bunch parameters as well as near-term projections. The viability of LWFA-driven incoherent undulator sources producing nanojoule-level pulses of femtosecond duration at wavelengths of 5 nm and 0.5 nm is demonstrated. A study on the prospective operation of an FEL at 32 nm is carried out, on the basis of scaling laws and full 3-D time-dependent simulations. A working point is selected, based on realistic bunch parameters. At that working point saturation is expected to occur within a length of 1.6 m with peak power at the 0.1 GW-level. This level, as well as the stability of the amplification process, can be improved significantly by seeding the FEL with an external radiation source. In the context of FEL seeding, we study the ability of conventional simulation codes to correctly handle seeds from high-harmonic generation (HHG) sources, which have a broad bandwidth and temporal structure on the attosecond scale. Namely, they violate the slowly-varying envelope approximation (SVEA) that underpins the governing equations in conventional codes. For this purpose we develop a 1-D simulation code that works outside the SVEA. We carry out a set of benchmarks that lead us to conclude that conventional codes are adequately capable of simulating seeding with broadband radiation, which is in line with an analytical treatment of the interaction. The second strand of work is experimental, and focuses on on the use of coherent transition radiation (CTR) as an electron bunch diagnostic. The thesis presents results from two experimental campaigns at the MPI für Quantenoptik in Garching, Germany. We present the first set of single-shot measurements of CTR over a continuous wavelength range from 420 nm to 7 μm. Data over such a broad spectral range allows for the first reconstruction of the longitudinal profiles of electron bunches from a laser-wakefield accelerator, indicating full-width at half-maximum bunch lengths around 1.4 μm (4.7 fs), corresponding to peak currents of several kiloampères. The bunch profiles are reconstructed through the application of phase reconstruction algorithms that were initially developed for studying x-ray diffraction data, and are adapted here for the first time to the analysis of CTR data. The measurements allow for an analysis of acceleration dynamics, and suggest that upon depletion of the driving laser the accelerated bunch can itself drive a wake in which electrons are injected. High levels of coherence at optical wavelengths indicate the presence of an interaction between the bunch and the driving laser pulse.
APA, Harvard, Vancouver, ISO, and other styles
4

Seggebrock, Thorben. "Conceptual design of a laser-plasma accelerator driven free-electron laser demonstration experiment." Diss., Ludwig-Maximilians-Universität München, 2015. http://nbn-resolving.de/urn:nbn:de:bvb:19-184314.

Full text
Abstract:
Up to now, short-wavelength free-electron lasers (FEL) have been systems on the scale of hundreds of meters up to multiple kilometers. Due to the advancements in laser-plasma acceleration in the recent years, these accelerators have become a promising candidate for driving a fifth-generation synchrotron light source – a lab-scale free-electron laser. So far, demonstration experiments have been hindered by the broad energy spread typical for this type of accelerator. This thesis addresses the most important challenges of the conceptual design for a first lab-scale FEL demonstration experiment using analytical considerations as well as simulations. The broad energy spread reduces the FEL performance directly by weakening the microbunching and indirectly via chromatic emittance growth, caused by the focusing system. Both issues can be mitigated by decompressing the electron bunch in a magnetic chicane, resulting in a sorting by energies. This reduces the local energy spread as well as the local chromatic emittance growth and also lowers performance degradations caused by the short bunch length. Moreover, the energy dependent focus position leads to a focus motion within the bunch, which can be synchronized with the radiation pulse, maximizing the current density in the interaction region. This concept is termed chromatic focus matching. A comparison shows the advantages of the longitudinal decompression concept compared to the alternative approach of transverse dispersion. When using typical laser-plasma based electron bunches, coherent synchrotron radiation and space-charge contribute in equal measure to the emittance growth during decompression. It is shown that a chicane for this purpose must not be as weak and long as affordable to reduce coherent synchrotron radiation, but that an intermediate length is required. Furthermore, the interplay of the individual concepts and components is assessed in a start-to-end simulation, confirming the feasibility of the envisioned experiment. Moreover, the setup tolerances for a first demonstration experiment are determined, confirming the general practicability. The revealed challenges, besides the energy spread, especially concern the source stability and the precision of the beam optics setup.
APA, Harvard, Vancouver, ISO, and other styles
5

Cipiccia, Silvia. "Compact gamma-ray sources based on laser-plasma wakefield accelerator." Thesis, University of Strathclyde, 2011. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=23936.

Full text
Abstract:
Laser-plasma wakefield accelerator (LWFA) is a promising novel technology that is introducing miniaturization to the accelerator world: the unprecedented gradient of acceleration shrinks the accelerator down to table-top size. Moreover, the LWFA comes with an embedded light source: electrons, while accelerating, undergo betatron oscillatory motion that results in synchrotron radiation emitted in a narrow cone along the direction of propagation. In this thesis we study theoretically and we prove experimentally a new regime of betatron oscillation that occurs when electrons experience the electromagnetic field of the laser during acceleration and oscillate resonantly at the laser frequency or its sub-harmonics. The signature of the harmonically resonant betatron (HRB) regime is a large oscillation amplitude and consequently prolific emission of high energy photons up to the MeV range. The HRB source has unique properties: very short pulse length (~10 fs), small source size (few microns), high peak brightness of the order of 1023 photons/s mm2 mrad2 0.1% B.W., which is comparable with a third generation light source. These properties make the source particularly appealing for the life sciences and medical and security applications. As a part of a future applications project, we give the scaling of the photon energy as a function of laser intensity and plasma density, which could extend toward tens of MeV. The thesis also investigates another gamma-ray source that utilises beams from the LWFA: bremsstrahlung radiation from high energy electrons interacting with metal targets. We study the electron beam and target parameters to optimize the emission process and the gamma-ray beam properties to match potential application requirements, such as radioisotope generation via photonuclear process. The results of a proof of concept experiment are presented and compared with simulations. Finally, we investigate numerically the possibility of generating a converging gamma ray beam based on the bremsstrahlung process. The results are encouraging, and the potential impact of a compact converging gamma-ray beam source is discussed with particular attention to medical applications in cancer treatment.
APA, Harvard, Vancouver, ISO, and other styles
6

André, Thomas. "Transport et manipulation d’électrons produits par interaction laser plasma sur la ligne COXINEL." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS602/document.

Full text
Abstract:
Les récents progrès en termes de techniques d’accélération par interaction Laser Plasma (LPA) permettent aujourd’hui de générer de forts gradients accélérateurs (GV.m⁻¹); cependant, les faisceaux d’électrons ainsi produits présentent encore une grande dispersion énergie (%) et une divergence élevée (mrad). Le projet COXINEL (ERC Advanced Grant 350014, PI. M.E. Couprie), vise à qualifier, en remplacement d’un accélérateur conventionnel, un accélérateur Laser Plasma, dans le but d’une application de Laser à Électrons Libres. Pour atteindre les propriétés requises, le faisceau d’électrons doit être manipulé à l’aide d’une ligne de transport. Cette ligne est constituée d’un premier triplet de quadrupôles à aimants permanents de gradient variable qui focalise le faisceau et permet la maîtrise de la divergence initiale. Une chicane électromagnétique réduit ensuite la dispersion en énergie par tranche en allongeant longitudinalement le faisceau. Une gamme d’énergie restreinte peut être ensuite sélectionnée via l’insertion d’une fente dans la chicane. Enfin, un quadruplet de quadrupôles électromagnétiques fournit la focalisation finale dans un onduleur. Le travail de thèse porte sur l’étude du transport des faisceaux d’électrons produit par LPA le long de cette ligne. Différents régimes de production d’électrons ont été utilisés : injection par ionisation, cellule de gaz. La maîtrise du transport a été obtenue à l’aide d’une nouvelle méthode d’alignement et de compensation de dérive de pointé initial des électrons en réglant de manière indépendante la position et la dispersion du faisceau à différents endroits de la ligne. Un réglage fin de l’énergie transportée a été effectué en ajustant le gradient des quadrupôles. Les faisceaux produits ont été transportés le long de la ligne et caractérisés en termes de distribution transverse, d’émittance et d’énergie. Les résultats expérimentaux ont ensuite été comparés avec succès aux simulations numériques. Ce travail ouvre la voie à l’observation de rayonnement de l’onduleur, étape préliminaire à une amplification Laser à Électrons Libres
Recent advances in Laser Plasma Acceleration techniques (LPA) are now able to generate strong accelerating gradients (GV.m⁻¹); however the produced electron beam thus still presents a large energy spread (%) and a large divergence (mrad). The COXINEL project (ERC Advanced Grant 350014, PI. M.E. Couprie), aims at qualifying, in replacement of a conventional accelerator, a Laser Plasma Accelerator, for a Free Electrons Laser application. To achieve the required properties, the electron beam must be manipulated using a transport line. This line consists in a first triplet of permanent magnets quadrupoles of variable gradient which focuses the beam and allows for the control of the initial divergence. An electromagnetic chicane then reduces the slice energy spread by lengthening the beam longitudinally. A restricted energy range can then be selected by inserting a slit inside the chicane. Finally, a quadruple of electromagnetic quadrupoles provides the final focus in an undulator. The thesis deals on the study of electron beam transport produced by LPA along this line. Different electron production regimes have been used: ionization injection, gas cell. The transport was controlled using a new alignment and pointing compensation method for the initial electron beam by adjusting independently the beam position and dispersion at different location on the line. A fine adjustment of the transported energy was carried out by adjusting the quadrupole gradient. The produced beam was transported along the line and was characterized in terms of transverse distribution, emittance and energy. Experimental results were then successfully compared with numerical simulations. This work paves the way for the observation of undulator radiation, a preliminary step before Free Electron Laser amplification
APA, Harvard, Vancouver, ISO, and other styles
7

Gonsalves, Anthony J. "Investigation of a hydrogen-filled capillary discharge waveguide for laser-driven plasma accelerator." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Seggebrock, Thorben [Verfasser], and Florian [Akademischer Betreuer] Grüner. "Conceptual design of a laser-plasma accelerator driven free-electron laser demonstration experiment / Thorben Seggebrock. Betreuer: Florian Grüner." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2015. http://d-nb.info/1074358740/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rovige, Lucas. "Optimization, stabilization and optical phase control of a high-repetition rate laser-wakefield accelerator." Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAE011.

Full text
Abstract:
Cette thèse de doctorat présente le travail expérimental sur le développement d'un accélérateur laser-plasma à haut taux de répétition (kHz) utilisant des impulsions laser de quelques milijoules, et de durée proche du cycle optique. Nous explorons un large ensemble de paramètres expérimentaux pour optimiser l'accélérateur en contrôlant la densité et le profil plasma, la durée des impulsions, le type de gaz et le mécanisme d'injection utilisés dans les expériences. Nous démontrons une amélioration significative des performances, notamment avec d’importants progrès réalisés sur la stabilité et la fiabilité à long terme de l'accélérateur, avec un fonctionnement continu et stable de l'accélérateur pendant plusieurs heures accumulant un record de 18 millions de tirs consécutifs. Ce gain de stabilité est obtenu en utilisant un nouveau type de jet de gaz qui utilise un choc hydrodynamique oblique asymétrique permettant l'injection d’électrons dans le gradient de densité descendant de la région choquée. En utilisant des simulations particle-in-cell, les causes physiques menant à un régime d'accélération optimisé et stable sont établies. L'énergie typique du faisceau d'électrons a également été augmentée d'un facteur deux, jusqu'à 8 MeV, tandis que des divergences divergence mono-tir du faisceau d’électrons aussi faible que 3mrad sont obtenues en utilisant de l'hélium au lieu de l'azote pour créer le plasma. Nous présentons ensuite les résultats d'une première expérience d'application en radiobiologie où notre accélérateur est utilisé pour irradier des cellules cancéreuses, en profitant de la stabilité nouvellement acquise.Dans un second temps, nous étudions les spécificités de l'interaction des impulsions proche du cycle optique avec un plasma sous-dense se produisant dans notre accélérateur, principalement par l'effet de la phase enveloppe-porteuse (CEP). Nous observons et contrôlons expérimentalement pour la première fois les effets CEP dans un accélérateur laser-plasma, qui se manifestent par une dépendance du pointé du faisceau d'électrons à la phase optique initiale du laser. Des variations de charge significatives (jusqu'à 30%) lorsque l'on change la valeur du CEP sont également observées dans certains cas. En effectuant des simulations particle-in-cell, nous expliquons ces effets par une injection périodique hors axe de plusieurs sous-faisceaux d'électrons déclenchée par l'oscillation de l'asymétrie de l'onde plasma dans la direction de polarisation du laser due au glissement de la CEP pendant la propagation. Enfin, nous discutons de résultats préliminaires concernant les effets de la CEP sur le spectre d'énergie des électrons associés à l'injection d'ionisation dans un mélange de gaz hélium-argon
This PhD thesis presents experimental work on the development of a high-repetition rate (kHz) laser-wakefield accelerator using few millijoules, near-single cycle laser pulses. We explore a large set of experimental parameters to optimize the accelerator by controlling the plasma density and profile, pulse duration, type of gas and injection mechanism used in experiments. We demonstrate significant performances improvement, notably with progress made on the long-term stability and reliability of the accelerator with continuous and stable operation of the accelerator for several hours accumulating a record of 18 million consecutive shots. We achieve this gain in stability by using a newly designed type of gas target resulting in an asymmetric hydrodynamic oblique shock enabling injection in the downward density transition of the shock region. Using particle-in-cell simulations, we understand in details the underlying causes leading to an optimized and stable acceleration regime. The typical electron beam energy has also been increased by a factor of two, up to 8 MeV, while a single-shot beam divergence as low as 3mrad is achieved using helium instead of nitrogen to form the plasma. We then present the results of a first application experiment in radiobiology where our accelerator is used to irradiate cancerous cells, taking advantage of the newly acquired stability.Secondly, we study the specificity of the interaction of near-single cycle pulses with an underdense plasma that occurs in our accelerator, mainly through the effect of the carrier-envelope phase (CEP). We observe and control experimentally for the first time CEP effects in a laser-wakefield accelerator, that manifest through a dependence of the electron beam pointing to the laser initial optical phase. We also show significant (up to 30%) charge variations in some cases when changing the value of the CEP. By carrying out particle-in-cell simulations, we explain these effects by the periodic off-axis injection of several electron sub-bunches triggered by the oscillation of the asymmetry of the plasma wave in the laser polarization direction due to the CEP shifting during propagation. Finally, we discuss preliminary results on carrier-envelope phase effects on the electron energy spectrum associated with ionization injection in a helium-argon gas mixture
APA, Harvard, Vancouver, ISO, and other styles
10

Oubrerie, Kosta. "Amélioration de l'efficacité des accélérateurs laser-plasma." Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAE002.

Full text
Abstract:
Pour générer des faisceaux d'électrons à hautes énergies, les accélérateurs conventionnels utilisent des ondes radiofréquences pour accélérer des particules chargées à des vitesses relativistes. Cependant, le champ électrique accélérateur produit est limité à quelques dizaines de mégavolts par mètre, dû notamment à un phénomène de claquage. Il faut donc des installations de très grande taille pour atteindre des énergies suffisamment élevées. Ainsi, l'accélérateur linéaire de Stanford (SLAC), qui est l'accélérateur linéaire le plus long au monde, accélère des électrons jusqu'à 50GeV sur 3.2km. Les accélérateurs laser-plasma peuvent produire des champs électriques dépassant 100 GV/m, soit environ trois ordres de grandeur plus grands que ceux obtenus par les accélérateurs à cavités radiofréquences. Ils pourraient ainsi permettre une diminution drastique de la taille des accélérateurs pour des applications scientifiques, médicales et industrielles. Cependant, plusieurs verrous devront être levés avant que ces applications puissent voir le jour. Il sera notamment nécessaire de démontrer la production efficace de faisceaux d'électrons de haute qualité, à des énergies de plusieurs GeV et à un taux de répétition élevé.Le projet doctoral s’attaque à cette problématique en explorant de nouvelles méthodes pour augmenter l'énergie des faisceaux d'électrons grâce à des techniques qui sont compatibles avec des puissances laser et des taux de répétition élevés et qui peuvent être alliées avec des méthodes d'injection contrôlée. En effet, des faisceaux d'électrons à haute énergie ou avec une injection contrôlée ont été obtenus séparément durant les quinze dernières années, mais jamais de manière combinée. Cette thèse présente les travaux réalisés sur les techniques de guidage ainsi que sur celles d'injection des électrons qui ont permis d'obtenir expérimentalement des faisceaux de bonne qualité à hautes énergies. Ce travail s'est fait notamment au travers de l'optimisation d'une optique nouvellement conçue au Laboratoire d'Optique Appliquée, l'axiparabole, ainsi que sur le développement de jets de gaz spécifiques à l'accélération laser-plasma
To generate high energy electron beams, conventional accelerators use radio frequency waves to accelerate charged particles to relativistic speeds. However, the accelerating electric field produced is limited to a few tens of megavolts per metre, mainly due to a breakdown phenomenon. Very large facilities are therefore needed to reach sufficiently high energies. For example, the Stanford Linear Accelerator (SLAC), which is the world's longest linear accelerator, accelerates electrons up to 50 GeV over a distance of 3.2 km. Laser-Plasma Accelerators can produce electric fields exceeding 100 GV/m, that are about three orders of magnitude larger than those obtained by radiofrequency-cavity accelerators. They could thus allow for a drastic decrease of the size of accelerators for scientific, medical and industrial applications. Yet, several bottlenecks have to be solved before these applications can be really implemented. It is notably necessary to demonstrate the efficient production of high-quality, multi-GeV electron beams at a high-repetition rate.The doctoral project tackles this problem by exploring new methods for increasing the energy of the electron beams thanks to techniques that are compatibles with arbitrarily high laser powers and repetition rates and that can be combined with controlled injection methods. Indeed, high energy or controlled injection electron beams have been obtained separately during the last fifteen years, but never combined. This thesis presents the work carried out on the guiding techniques as well as on the electron injection techniques which allowed to obtain experimentally good quality beams at high energies. This work was done in particular through the optimisation of a new optic designed at the Laboratoire d'Optique Appliquée, the axiparabola, as well as the development of gas jets specific to laser-plasma acceleration
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Laser plasma accelerator"

1

Canada, Atomic Energy of. Laser Plasma Beatwave Accelerator Experiment. S.l: s.n, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

(Fernando), Ferroni F., Gizzi, L. A. (Leonida Antonio), Faccini R. (Riccardo), and Società italiana di fisica, eds. Laser-plasma acceleration : proceedings of the International School of Physics "Enrico Fermi", Varenna on Lake Como, Villa Monastero, 20-25 June 2011: Accelerazione laser-plasma : rendiconti della Scuola internazionale di fisica "Enrico Fermi", Varenna sul Lago di Como, Villa Monastero, 20-25 Giugno 2011. Amsterdam: IOS Press, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zheng-Ming, Sheng, and Zhang Jie, eds. Asian Summer School on Laser Plasma Acceleration and Radiation: Beijing, China, 7-11 August 2006. Melville, N.Y: American Institute of Physics, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shiraishi, Satomi. Investigation of Staged Laser-Plasma Acceleration. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-08569-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

CAS-ECFA-INFN Workshop (1984 Frascati, Italy). The generation of high fields for particle acceleration to very high energies: Proceedings of the CAS-ECFA-INFN Workshop, Laboratori Nazionali dell'INFN, 25 September-1 October 1984. Geneva: CERN, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chan, Joshi, Katsouleas Thomas, and Workshop on Laser Acceleration of Particles (2nd : 1985 : UCLA), eds. Laser acceleration of particles: Malibu, California, 1985. New York: American Institute of Physics, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kōichi, Kan, and Yang Jinfeng (Physicist), eds. Rēzā to purazuma to ryūshi bīmu. Suita-shi: Ōsaka Daigaku Shuppankai, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ferroni, F., L. A. Gizzi, and R. Faccini. Laser-Plasma Acceleration. IOS Press, Incorporated, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shiraishi, Satomi. Investigation of Staged Laser-Plasma Acceleration. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shiraishi, Satomi. Investigation of Staged Laser-Plasma Acceleration. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Laser plasma accelerator"

1

Shiraishi, Satomi. "Staged Laser-Plasma Accelerator: Introduction." In Springer Theses, 31–37. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08569-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Islam, M. R., S. Cipiccia, B. Ersfeld, A. Reitsma, J. L. Martin, L. Silva, and D. A. Jaroszynski. "Electron Self-Injection and Radiation in the Laser Plasma Accelerator." In Springer Proceedings in Physics, 543–48. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9924-3_64.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shiraishi, Satomi. "Laser-Plasma Accelerators." In Springer Theses, 7–30. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08569-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Malka, Victor. "Laser Plasma Accelerators." In Laser-Plasma Interactions and Applications, 281–301. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00038-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tóth, Csaba, Jeroen van Tilborg, Carl B. Schroeder, Cameron G. R. Geddes, Eric Esarey, and Wim Leemans. "Spatio-Temporal Properties of Single-Cycle THz Pulses Generated by Relativistic Electron Beams in a Laser-Plasma Accelerator." In Ultrafast Phenomena XV, 775–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68781-8_247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Najmudin, Zulfikar. "Laser Wakefield Accelerators: Plasma Wave Growth and Acceleration." In Springer Proceedings in Physics, 51–70. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25850-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Seryi, Andrei A., and Elena I. Seraia. "Plasma Acceleration." In Unifying Physics of Accelerators, Lasers and Plasma, 125–48. 2nd ed. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003326076-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Roth, Markus, and Marius Schollmeier. "Ion Acceleration: TNSA." In Laser-Plasma Interactions and Applications, 303–50. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00038-1_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Seryi, Andrei A., and Elena I. Seraia. "Proton and Ion Laser Plasma Acceleration." In Unifying Physics of Accelerators, Lasers and Plasma, 197–216. 2nd ed. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003326076-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Seryi, Andrei A., and Elena I. Seraia. "Conventional Acceleration." In Unifying Physics of Accelerators, Lasers and Plasma, 97–124. 2nd ed. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003326076-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Laser plasma accelerator"

1

Malka, Victor, A. Lifschitz, J. Faure, and Y. Glinec. "Laser-Plasma Accelerators." In ADVANCED ACCELERATOR CONCEPTS: 12th Advanced Accelerator Concepts Workshop. AIP, 2006. http://dx.doi.org/10.1063/1.2409121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sokollik, Thomas, Satomi Shiraishi, Brian Shaw, Antony Gonsalves, Kei Nakamura, Jeroen van Tilborg, Eric Esarey, et al. "Staged laser plasma accelerators." In ADVANCED ACCELERATOR CONCEPTS: 15th Advanced Accelerator Concepts Workshop. AIP, 2013. http://dx.doi.org/10.1063/1.4773716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

van Tilborg, J., S. K. Barber, F. Isono, C. B. Schroeder, E. Esarey, and W. P. Leemans. "Free-electron lasers driven by laser plasma accelerators." In ADVANCED ACCELERATOR CONCEPTS: 17th Advanced Accelerator Concepts Workshop. Author(s), 2017. http://dx.doi.org/10.1063/1.4975838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hidding, B., T. Königstein, S. Karsch, O. Willi, G. Pretzler, J. B. Rosenzweig, Steven H. Gold, and Gregory S. Nusinovich. "Hybrid Laser-Plasma Wakefield Acceleration." In ADVANCED ACCELERATOR CONCEPTS: 14th Advanced Accelerator Concepts Workshop. AIP, 2010. http://dx.doi.org/10.1063/1.3520370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schroeder, C. B., E. Esarey, and W. P. Leemans. "Operational plasma density and laser parameters for future colliders based on laser-plasma accelerators." In ADVANCED ACCELERATOR CONCEPTS: 15th Advanced Accelerator Concepts Workshop. AIP, 2013. http://dx.doi.org/10.1063/1.4773817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Terauchi, Hiromitsu, Takeshi Higashiguchi, Noboru Yugami, Nadezhda A. Bobrova, Steven H. Gold, and Gregory S. Nusinovich. "Plasma Diagnostics of a Capillary Plasma Channel for Laser Guiding." In ADVANCED ACCELERATOR CONCEPTS: 14th Advanced Accelerator Concepts Workshop. AIP, 2010. http://dx.doi.org/10.1063/1.3520321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Downer, M. C. "Plasma Channels and Laser Pulse Tailoring for GeV Laser-Plasma Accelerators." In ADVANCED ACCELERATOR CONCEPTS: Tenth Workshop. AIP, 2002. http://dx.doi.org/10.1063/1.1524920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Plateau, G. R., C. G. R. Geddes, N. H. Matlis, E. Cormier-Michel, D. E. Mittelberger, K. Nakamura, C. B. Schroeder, et al. "Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control." In ADVANCED ACCELERATOR CONCEPTS: 14th Advanced Accelerator Concepts Workshop. AIP, 2010. http://dx.doi.org/10.1063/1.3520310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Geddes, C. G. R., E. Cormier-Michel, E. Esarey, C. B. Schroeder, P. Mullowney, K. Paul, J. R. Cary, W. P. Leemans, Steven H. Gold, and Gregory S. Nusinovich. "Laser-Plasma Wakefield Acceleration with Higher Order Laser Modes." In ADVANCED ACCELERATOR CONCEPTS: 14th Advanced Accelerator Concepts Workshop. AIP, 2010. http://dx.doi.org/10.1063/1.3520313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nakamura, K., A. J. Gonsalves, C. Lin, T. Sokollik, A. Smith, D. Rodgers, R. Donahue, et al. "Charge Diagnostics for Laser Plasma Accelerators." In ADVANCED ACCELERATOR CONCEPTS: 14th Advanced Accelerator Concepts Workshop. AIP, 2010. http://dx.doi.org/10.1063/1.3520319.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Laser plasma accelerator"

1

Thomas, Alexander, Mario Balcazar, Hai-En Tsai, Tobias Ostermayr, Matthew Trantham, Sahel Hakimi, Paul Campbell, et al. X-ray Pump-Probe Measurements using a Laser-Plasma Accelerator (Final Report). Office of Scientific and Technical Information (OSTI), November 2022. http://dx.doi.org/10.2172/1900505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lumplin, Alex. Coherent Optical Transition Radiation Imaging for Laser-Driven Plasma Accelerator Electron-Beam Diagnostics. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1599615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schroeder, Carl, Carlo Benedetti, Stepan Bulanov, Min Chen, Eric Esarey, Cameron Geddes, J. Vay, Lule Yu, and Wim Leemans. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator. Office of Scientific and Technical Information (OSTI), May 2015. http://dx.doi.org/10.2172/1233743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yampolsky, Nikolai, Scott Luedtke, Evgenya Simakov, Stephen Milton, Sandra Biedron, and Bjorn Hegelich. Feasibility study for the hard x-ray free electron laser based on synergistic use of conventional and plasma accelerator technologies. Office of Scientific and Technical Information (OSTI), October 2022. http://dx.doi.org/10.2172/1891797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lumpkin, A. H., D. W. Rule, LaBerge M. LaBerge M., and M. C. Downer. Observations on Microbunching of Electrons in Laser-Driven Plasma Accelerators and Free-Electron Lasers. Office of Scientific and Technical Information (OSTI), January 2019. http://dx.doi.org/10.2172/1596020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Esarey, Eric, and Carl B. Schroeder. Physics of Laser-driven plasma-based acceleration. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/843065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Propp, Adrienne. Ion Acceleration by Laser Plasma Interaction from Cryogenic Microjets. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1342500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nakamura, Kei. Control of Laser Plasma Based Accelerators up to 1 GeV. Office of Scientific and Technical Information (OSTI), December 2007. http://dx.doi.org/10.2172/941427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Popp, Adrienne. Ion acceleration by laser plasma interaction from liquid cryogenic microjets. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1213122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sprangle, Philip, Eric Esarey, and Jonathan Krall. Laser Driven Electron Acceleration in Vacuum, Gases and Plasmas,. Fort Belvoir, VA: Defense Technical Information Center, April 1996. http://dx.doi.org/10.21236/ada309330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography