To see the other types of publications on this topic, follow the link: Laser plasma accelerator.

Journal articles on the topic 'Laser plasma accelerator'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Laser plasma accelerator.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ogata, Atsushi, and Kazuhisa Nakajima. "Recent progress and perspectives of laser–plasma accelerators." Laser and Particle Beams 16, no. 2 (June 1998): 381–96. http://dx.doi.org/10.1017/s0263034600011654.

Full text
Abstract:
Recent progress in laser-plasma accelerators has matured a concept of particle acceleration as a possible next-generation particle accelerator promising ultrahigh accelerating gradients in a compact size. Four major concepts of laser-plasma accelerators—the plasma beat wave accelerator, the laser wakefield accelerator, the self-modulated laser wakefield accelerator, and the plasma wakefield accelerator—are reviewed on accelerator physics issues and experiments demonstrating the basic mechanisms of their concepts. As a perspective to the future practical application, a design of 5-TeV linear colliders based on the laser wakefield accelerator is discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Bingham, Robert. "Basic concepts in plasma accelerators." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1840 (February 2006): 559–75. http://dx.doi.org/10.1098/rsta.2005.1722.

Full text
Abstract:
In this article, we present the underlying physics and the present status of high gradient and high-energy plasma accelerators. With the development of compact short pulse high-brightness lasers and electron and positron beams, new areas of studies for laser/particle beam–matter interactions is opening up. A number of methods are being pursued vigorously to achieve ultra-high-acceleration gradients. These include the plasma beat wave accelerator (PBWA) mechanism which uses conventional long pulse (∼100 ps) modest intensity lasers ( I ∼10 14 –10 16 W cm −2 ), the laser wakefield accelerator (LWFA) which uses the new breed of compact high-brightness lasers (<1 ps) and intensities >10 18 W cm −2 , self-modulated laser wakefield accelerator (SMLWFA) concept which combines elements of stimulated Raman forward scattering (SRFS) and electron acceleration by nonlinear plasma waves excited by relativistic electron and positron bunches the plasma wakefield accelerator. In the ultra-high intensity regime, laser/particle beam–plasma interactions are highly nonlinear and relativistic, leading to new phenomenon such as the plasma wakefield excitation for particle acceleration, relativistic self-focusing and guiding of laser beams, high-harmonic generation, acceleration of electrons, positrons, protons and photons. Fields greater than 1 GV cm −1 have been generated with monoenergetic particle beams accelerated to about 100 MeV in millimetre distances recorded. Plasma wakefields driven by both electron and positron beams at the Stanford linear accelerator centre (SLAC) facility have accelerated the tail of the beams.
APA, Harvard, Vancouver, ISO, and other styles
3

Polozov, Sergey M., and Vladimir I. Rashchikov. "Simulation studies of beam dynamics in 50 MeV linear accelerator with laser-plasma electron gun." Cybernetics and Physics, Volume 10, 2021, Number 4 (December 31, 2021): 260–70. http://dx.doi.org/10.35470/2226-4116-2021-10-4-260-270.

Full text
Abstract:
Conventionally, electron guns with thermionic cathodes or field-emission cathodes are used for research or technological linear accelerators. RF-photoguns are used to provide the short electron bunches which could be used for FEL’s of compact research facilities to generate monochromatic photons. Low energy of emitted electrons is the key problem for photoguns due to high influence of Coulomb field and difficulties with the first accelerating cell simulation and construction. Contrary, plasma sources, based on the laser-plasma wakefield acceleration, have very high acceleration gradient but rather broad energy spectrum compared with conventional thermoguns or field-emission guns. The beam dynamics in the linear accelerator combines the laser-plasma electron source and conventional RF linear accelerator is discussed in this paper. Method to capture and re-accelerate the short picosecond bunch with extremely broad energy spread (up to 50 %) is presented. Numerical simulation shows that such bunches can be accelerated in RF linear accelerator to the energy of 50 MeV with output energy spread not higher than 1 % .
APA, Harvard, Vancouver, ISO, and other styles
4

Schroeder, C. B., F. Albert, C. Benedetti, J. Bromage, D. Bruhwiler, S. S. Bulanov, E. M. Campbell, et al. "Linear colliders based on laser-plasma accelerators." Journal of Instrumentation 18, no. 06 (June 1, 2023): T06001. http://dx.doi.org/10.1088/1748-0221/18/06/t06001.

Full text
Abstract:
Abstract Laser-plasma accelerators are capable of sustaining accelerating fields of 10–100 GeV/m, 100–1000 times that of conventional technology and the highest fields produced by any of the widely researched advanced accelerator concepts. Laser-plasma accelerators also intrinsically accelerate short particle bunches, several orders of magnitude shorter than that of conventional technology, which leads to reductions in beamstrahlung and, hence, savings in the overall power consumption to reach a desired luminosity. These properties make laser-plasma accelerators a promising accelerator technology for a more compact, less expensive high-energy linear collider providing multi-TeV polarized leptons. In this submission to the Snowmass 2021 Accelerator Frontier, we discuss the motivation for a laser-plasma-accelerator-based linear collider, the status of the field, and potential linear collider concepts up to 15 TeV. We outline the research and development path toward a collider based on laser-plasma accelerator technology, and highlight near-term and mid-term applications of this technology on the collider development path. The required experimental facilities to carry out this research are described. We conclude with community recommendations developed during Snowmass.
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Dongyu, Tang Yang, Minjian Wu, Zhusong Mei, Kedong Wang, Chunyang Lu, Yanying Zhao, et al. "Introduction of Research Work on Laser Proton Acceleration and Its Application Carried out on Compact Laser–Plasma Accelerator at Peking University." Photonics 10, no. 2 (January 28, 2023): 132. http://dx.doi.org/10.3390/photonics10020132.

Full text
Abstract:
Laser plasma acceleration has made remarkable progress in the last few decades, but it also faces many challenges. Although the high gradient is a great potential advantage, the beam quality of the laser accelerator has a certain gap, or it is different from that of traditional accelerators. Therefore, it is important to explore and utilize its own features. In this article, some recent research progress on laser proton acceleration and its irradiation application, which was carried out on the compact laser plasma accelerator (CLAPA) platform at Peking University, have been introduced. By combining a TW laser accelerator and a monoenergetic beamline, proton beams with energies of less than 10 MeV, an energy spread of less than 1%, and with several to tens of pC charge, have been stably produced and transported in CLAPA. The beamline is an object–image point analyzing system, which ensures the transmission efficiency and the energy selection accuracy for proton beams with large initial divergence angle and energy spread. A spread-out Bragg peak (SOBP) is produced with high precision beam control, which preliminarily proved the feasibility of the laser accelerator for radiotherapy. Some application experiments based on laser-accelerated proton beams have also been carried out, such as proton radiograph, preparation of graphene on SiC, ultra-high dose FLASH radiation of cancer cells, and ion-beam trace probes for plasma diagnosis. The above applications take advantage of the unique characteristics of laser-driven protons, such as a micron scale point source, an ultra-short pulse duration, a wide energy spectrum, etc. A new laser-driven proton therapy facility (CLAPA II) is being designed and is under construction at Peking University. The 100 MeV proton beams will be produced via laser–plasma interaction by using a 2-PW laser, which may promote the real-world applications of laser accelerators in malignant tumor treatment soon.
APA, Harvard, Vancouver, ISO, and other styles
6

Malka, V., J. Faure, Y. Glinec, and A. F. Lifschitz. "Laser–plasma accelerator: status and perspectives." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1840 (January 25, 2006): 601–10. http://dx.doi.org/10.1098/rsta.2005.1725.

Full text
Abstract:
Laser–plasma accelerators deliver high-charge quasi-monoenergetic electron beams with properties of interest for many applications. Their angular divergence, limited to a few mrad, permits one to generate a small γ ray source for dense matter radiography, whereas their duration (few tens of fs) permits studies of major importance in the context of fast chemistry for example. In addition, injecting these electron beams into a longer plasma wave structure will extend their energy to the GeV range. A GeV laser-based accelerator scheme is presented; it consists of the acceleration of this electron beam into relativistic plasma waves driven by a laser. This compact approach (centimetres scale for the plasma, and tens of meters for the whole facility) will allow a miniaturization and cost reduction of future accelerators and derived X-ray free electron laser (XFEL) sources.
APA, Harvard, Vancouver, ISO, and other styles
7

Leemans, Wim, Eric Esarey, Cameron Geddes, Carl Schroeder, and Csaba Tóth. "Laser guiding for GeV laser–plasma accelerators." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1840 (January 25, 2006): 585–600. http://dx.doi.org/10.1098/rsta.2005.1724.

Full text
Abstract:
Guiding of relativistically intense laser beams in preformed plasma channels is discussed for development of GeV-class laser accelerators. Experiments using a channel guided laser wakefield accelerator at Lawrence Berkeley National Laboratory (LBNL) have demonstrated that near mono-energetic 100 MeV-class electron beams can be produced with a 10 TW laser system. Analysis, aided by particle-in-cell simulations, as well as experiments with various plasma lengths and densities, indicate that tailoring the length of the accelerator, together with loading of the accelerating structure with beam, is the key to production of mono-energetic electron beams. Increasing the energy towards a GeV and beyond will require reducing the plasma density and design criteria are discussed for an optimized accelerator module. The current progress and future directions are summarized through comparison with conventional accelerators, highlighting the unique short-term prospects for intense radiation sources based on laser-driven plasma accelerators.
APA, Harvard, Vancouver, ISO, and other styles
8

Kiani, Leily, Tong Zhou, Seung-Whan Bahk, Jake Bromage, David Bruhwiler, E. Michael Campbell, Zenghu Chang, et al. "High average power ultrafast laser technologies for driving future advanced accelerators." Journal of Instrumentation 18, no. 08 (August 1, 2023): T08006. http://dx.doi.org/10.1088/1748-0221/18/08/t08006.

Full text
Abstract:
Abstract Large scale laser facilities are needed to advance the energy frontier in high energy physics and accelerator physics. Laser plasma accelerators are core to advanced accelerator concepts aimed at reaching TeV electron electron colliders. In these facilities, intense laser pulses drive plasmas and are used to accelerate electrons to high energies in remarkably short distances. A laser plasma accelerator could in principle reach high energies with an accelerating length that is 1000 times shorter than in conventional RF based accelerators. Notionally, laser driven particle beam energies could scale beyond state of the art conventional accelerators. LPAs have produced multi GeV electron beams in about 20 cm with relative energy spread of about 2 percent, supported by highly developed laser technology. This validates key elements of the US DOE strategy for such accelerators to enable future colliders but extending best results to date to a TeV collider will require lasers with higher average power. While the per pulse energies envisioned for laser driven colliders are achievable with current lasers, low laser repetition rates limit potential collider luminosity. Applications will require rates of kHz to tens of kHz at Joules of energy and high efficiency, and a collider would require about 100 such stages, a leap from current Hz class LPAs. This represents a challenging 1000 fold increase in laser repetition rates beyond current state of the art. This whitepaper describes current research and outlook for candidate laser systems as well as the accompanying broadband and high damage threshold optics needed for driving future advanced accelerators.
APA, Harvard, Vancouver, ISO, and other styles
9

MALKA, V., A. F. LIFSCHITZ, J. FAURE, and Y. GLINEC. "GeV MONOENERGETIC ELECTRON BEAM WITH LASER PLASMA ACCELERATOR." International Journal of Modern Physics B 21, no. 03n04 (February 10, 2007): 277–86. http://dx.doi.org/10.1142/s0217979207042057.

Full text
Abstract:
Laser plasma accelerators produce today ultra short, quasi-monoenergetic and collimated electron beams with potential applications in material science, chemistry and medicine. The laser plasma accelerator used to produce such an electron beam is presented. The design of a laser based accelerator designed to produce more energetic electron beams with a narrow relative energy spread is also proposed here. This compact approach should permit a miniaturization and cost reduction of future accelerators and associated X-Free Electrons Lasers (XFEL).
APA, Harvard, Vancouver, ISO, and other styles
10

Ebrahim, N. A., and S. R. Douglas. "Acceleration of particles by relativistic electron plasma waves driven by the optical mixing of laser light in a plasma." Laser and Particle Beams 13, no. 1 (March 1995): 147–71. http://dx.doi.org/10.1017/s0263034600008910.

Full text
Abstract:
Electron acceleration by relativistic electron plasma waves is studied by theory and particle simulations. The maximum acceleration that can be obtained from this process depends on many different factors. This paper presents a study of how these various factors impact on the acceleration mechanism. Although particular reference is made to the laser plasma beatwave concept, the study is equally relevant to the acceleration of particles in the plasma wakefield accelerator and the laser wakefield accelerator.
APA, Harvard, Vancouver, ISO, and other styles
11

LIFSCHITZ, A. F., J. FAURE, Y. GLINEC, V. MALKA, and P. MORA. "Proposed scheme for compact GeV laser plasma accelerator." Laser and Particle Beams 24, no. 2 (June 2006): 255–59. http://dx.doi.org/10.1017/s026303460606037x.

Full text
Abstract:
The design of a two-stage compact GeV electron accelerator is presented. The accelerator is as follows: (1) an ultra-short electron bunch is produced in a state-of-the-art laser-plasma accelerator (injector stage), (2) it is injected into an accelerating stage consisting of a centimeter length low density plasma interacting with a petawatt laser pulse. The parameters for the injector are taken from recent experimental results showing that high quality, ultra-short, and quasi-monoenergetic electron beams are now being produced in laser-plasma accelerators. Simulations performed with WAKE show that this method can lead to the production of high quality, monoenergetic, and sub-50 fs electron bunches at the GeV energy level.
APA, Harvard, Vancouver, ISO, and other styles
12

Liu, Sheng. "Alysis of Laser-Plasma Based Electron-Positron Collider." Highlights in Science, Engineering and Technology 38 (March 16, 2023): 672–77. http://dx.doi.org/10.54097/hset.v38i.5926.

Full text
Abstract:
Contemporarily, the collider plays a vital role in research and analysis for high energy physics, particle physics and astrophysics. However, conventional colliders usually need a large budget to operate as well as cover a large area for displacing the facility. With the rapid development of the laser techniques, the laser-plasma accelerator paves a path to accelerate particles in a compact way. On this basis, this paper will analyze the feasibility and recent progress for electron-positron collider realization via the concept of the laser-plasma acceleration. To be specific, the principles behind it will be analyzed initially. To be specific, an intense electromagnetic could make the plasma oscillated due to the pondermotive force, and the electron field created by the oscillation of the plasma could accelerate electrons to high energy. In addition, the possibility of applying laser plasma acceleration in to electron-positron collider is examined. These results shed light on guiding the further exploration of future electron-positron collider.
APA, Harvard, Vancouver, ISO, and other styles
13

Ashanin, Ilya A., Yulia D. Kluchevskaia, Sergey M. Polozov, and Vladimir I. Rashchikov. "Linear electron accelerator for energy 8-50 MeV with injection from an electron source based on cluster plasma systems." Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes 18, no. 4 (2022): 443–86. http://dx.doi.org/10.21638/11401/spbu10.2022.403.

Full text
Abstract:
For many years, one of the key problems of modern accelerator physics has been an increase of the rate of the energy gain in RF linear electron accelerators. The physical limits of the accelerating field intensity for metallic accelerating structures have been practically reached; therefore, new acceleration schemes are being considered, primarily acceleration in plasma and wakefield acceleration. The second aim is the generation of ultrashort (100 fs and less) electron bunches, for which RF photoguns are traditionally used. In this case, for RF photoguns, a serious problem that limits the intensity of electrons in a bunch is the influence of the own space charge during emission and acceleration in the near-cathode region, where the beam is weakly relativistic and the influence of the space charge on its dynamics plays the determinative role. The possibility of using a plasma cathode source as an injector for RF accelerator will considered. In the future, this may make it possible to bypass the limitations inherent in RF photoguns (sufficient influence of the space charge on the beam dynamics in the near-cathode region) and acceleration in the laser-plasma channel (low electron capture coefficient in the acceleration mode, wide energy spectrum - 10% or more at energies of tens and hundreds of megaelectrons). It is proposed to develop a combined accelerator in which a bunch generated in a laser-plasma channel is injected into a traditional metal structure. It is supposed that could be possible to generate a short (from 0.1 to 1.0 ps) electron bunches with an energy of several hundred kiloelectrons, which will make it possible to consider such source as an alternative to the photocathode. Next, the beam must be captured in the acceleration mode in a normally conducting section and accelerated to an energy of 50 MeV with the possibility of energy tuning. The features of such accelerator, the features of the electron bunch capturing in the acceleration mode, and the possible values of the energy spectrum in such a system will considered.
APA, Harvard, Vancouver, ISO, and other styles
14

Pae, K. H., I. W. Choi, and J. Lee. "Self-mode-transition from laser wakefield accelerator to plasma wakefield accelerator of laser-driven plasma-based electron acceleration." Physics of Plasmas 17, no. 12 (December 2010): 123104. http://dx.doi.org/10.1063/1.3522757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

NAKAJIMA, KAZUHISA. "Particle acceleration by ultraintense laser interactions with beams and plasmas." Laser and Particle Beams 18, no. 3 (July 2000): 519–28. http://dx.doi.org/10.1017/s0263034600183247.

Full text
Abstract:
Recently, there has been great interest growing in ultrahigh field particle acceleration driven by ultraintense laser interactions with beams and plasmas. Although numerous concepts of particle acceleration by laser fields have been proposed almost since the beginning of the laser evolution, there has been tremendous progress in recent years on their theoretical and experimental aspects owing to advances in the generation of ultraintense short laser pulses. The laser–plasma accelerator concepts are reviewed on the laser wakefield acceleration mechanism. In particular, the electron acceleration by the laser wakefield in plasmas is illustrated by our recent experimental results, including the propagation of the ultrashort intense laser pulses in plasmas.
APA, Harvard, Vancouver, ISO, and other styles
16

Minenna, D. F. G., C. Ballage, V. Bencini, S. Bethuys, B. Cros, L. Dickson, S. Doebert, et al. "EARLI: design of a laser wakefield accelerator for AWAKE." Journal of Physics: Conference Series 2687, no. 4 (January 1, 2024): 042007. http://dx.doi.org/10.1088/1742-6596/2687/4/042007.

Full text
Abstract:
Abstract Following the successful Run 1 experiment, the Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) Run2 experiment requires the design and implementation of a compact electron source. The “high-quality Electron Accelerator driven by a Reliable Laser wakefield for Industrial uses” (EARLI) project aims to design a stand-alone high-quality electron injector based on a laser wakefield accelerator (LWFA) as an alternative proposal to AWAKE’s baseline design of an X-band electron gun. This project is currently in the design phase, including simulations and experimental tests. Exhaustive beam physics studies for conventional accelerators are applied to LWFA physics.
APA, Harvard, Vancouver, ISO, and other styles
17

Assmann, R. W., M. K. Weikum, T. Akhter, D. Alesini, A. S. Alexandrova, M. P. Anania, N. E. Andreev, et al. "EuPRAXIA Conceptual Design Report." European Physical Journal Special Topics 229, no. 24 (December 2020): 3675–4284. http://dx.doi.org/10.1140/epjst/e2020-000127-8.

Full text
Abstract:
AbstractThis report presents the conceptual design of a new European research infrastructure EuPRAXIA. The concept has been established over the last four years in a unique collaboration of 41 laboratories within a Horizon 2020 design study funded by the European Union. EuPRAXIA is the first European project that develops a dedicated particle accelerator research infrastructure based on novel plasma acceleration concepts and laser technology. It focuses on the development of electron accelerators and underlying technologies, their user communities, and the exploitation of existing accelerator infrastructures in Europe. EuPRAXIA has involved, amongst others, the international laser community and industry to build links and bridges with accelerator science — through realising synergies, identifying disruptive ideas, innovating, and fostering knowledge exchange. The Eu-PRAXIA project aims at the construction of an innovative electron accelerator using laser- and electron-beam-driven plasma wakefield acceleration that offers a significant reduction in size and possible savings in cost over current state-of-the-art radiofrequency-based accelerators. The foreseen electron energy range of one to five gigaelectronvolts (GeV) and its performance goals will enable versatile applications in various domains, e.g. as a compact free-electron laser (FEL), compact sources for medical imaging and positron generation, table-top test beams for particle detectors, as well as deeply penetrating X-ray and gamma-ray sources for material testing. EuPRAXIA is designed to be the required stepping stone to possible future plasma-based facilities, such as linear colliders at the high-energy physics (HEP) energy frontier. Consistent with a high-confidence approach, the project includes measures to retire risk by establishing scaled technology demonstrators. This report includes preliminary models for project implementation, cost and schedule that would allow operation of the full Eu-PRAXIA facility within 8—10 years.
APA, Harvard, Vancouver, ISO, and other styles
18

Hafz, Nasr A. M., R. Hemker, A. Zhidkov, H. Okuda, W. Ghaly, K. Kinoshita, T. Hosokai, et al. "Laser-plasma electron linear accelerator." International Journal of Applied Electromagnetics and Mechanics 14, no. 1-4 (December 20, 2002): 271–76. http://dx.doi.org/10.3233/jae-2002-379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Hogan, Mark J. "Electron and Positron Beam–Driven Plasma Acceleration." Reviews of Accelerator Science and Technology 09 (January 2016): 63–83. http://dx.doi.org/10.1142/s1793626816300036.

Full text
Abstract:
Particle accelerators are the ultimate microscopes. They produce high energy beams of particles — or, in some cases, generate X-ray laser pulses — to probe the fundamental particles and forces that make up the universe and to explore the building blocks of life. But it takes huge accelerators, like the Large Hadron Collider or the two-mile-long SLAC linac, to generate beams with enough energy and resolving power. If we could achieve the same thing with accelerators just a few meters long, accelerators and particle colliders could be much smaller and cheaper. Since the first theoretical work in the early 1980s, an exciting series of experiments have aimed at accelerating electrons and positrons to high energies in a much shorter distance by having them “surf” on waves of hot, ionized gas like that found in fluorescent light tubes. Electron-beam-driven experiments have measured the integrated and dynamic aspects of plasma focusing, the bright flux of high energy betatron radiation photons, particle beam refraction at the plasma–neutral-gas interface, and the structure and amplitude of the accelerating wakefield. Gradients spanning kT/m to MT/m for focusing and 100[Formula: see text]MeV/m to 50[Formula: see text]GeV/m for acceleration have been excited in meter-long plasmas with densities of 10[Formula: see text]–10[Formula: see text][Formula: see text]cm[Formula: see text], respectively. Positron-beam-driven experiments have evidenced the more complex dynamic and integrated plasma focusing, 100[Formula: see text]MeV/m to 5[Formula: see text]GeV/m acceleration in linear and nonlinear plasma waves, and explored the dynamics of hollow channel plasma structures. Strongly beam-loaded plasma waves have accelerated beams of electrons and positrons with hundreds of pC of charge to over 5[Formula: see text]GeV in meter scale plasmas with high efficiency and narrow energy spread. These “plasma wakefield acceleration” experiments have been mounted by a diverse group of accelerator, laser and plasma researchers from national laboratories and universities around the world. This article reviews the basic principles of plasma wakefield acceleration with electron and positron beams, the current state of understanding, the push for first applications and the long range R&D roadmap toward a high energy collider.
APA, Harvard, Vancouver, ISO, and other styles
20

Joshi, Chan, Wei Lu, and Zhengming Sheng. "Progress in laser acceleration of particles." Journal of Plasma Physics 78, no. 4 (August 2012): 321–22. http://dx.doi.org/10.1017/s0022377812000669.

Full text
Abstract:
Laser acceleration of particles is currently a very active area of research in Plasma Physics, with an emphasis on acceleration of electrons and ions using short but intense laser pulses. In this special issue we access the current status of this field by inviting leading researchers all over the world to contribute their original works here. Many of these results were first presented at the recent Laser-Particle Acceleration Workshop (LPAW 2011) held in Wuzhen, China in June 2011. In addition to the laser wakefield acceleration (LWFA) of electrons (Tzoufras et al.) and laser acceleration of ions (Tsung et al.), there were exciting new proposals for a proton-driven plasma wakefield accelerator (Xia et al.) and for a dielectric-structure-based two-beam accelerator (Gai et al.) presented at this workshop, and we are very pleased to have the authors' contributions on these included here.
APA, Harvard, Vancouver, ISO, and other styles
21

Tajima, T. "High energy laser plasma accelerators." Laser and Particle Beams 3, no. 4 (November 1985): 351–413. http://dx.doi.org/10.1017/s0263034600001117.

Full text
Abstract:
Intense colinear laser beams ω0, k0 and ω1, k1, shone on a plasma with a frequency separation equal to the electron plasma frequency ωpe are capable of creating a large coherent longitudinal electric field EL = mcωpe/e of the order of 1 GeV/cm for a plasma density of 1018 cm-3 by the laser beat excitation of plasma oscillations. Accompanying favourable and deleterious physical effects using this process for a high energy beatwave accelerator are discussed: longitudinal dephasing, pump depletion, transverse laser diffraction, plasma turbulence effects, self-steepening, self-focusing, etc. The basic equation, the driven nonlinear Schrödinger equation, is derived to describe this system. Advanced accelerator concepts to overcome some of these problems are proposed, including various forms of the plasma fiber accelerator. An advanced laser architecture suitable for the beat-wave accelerator is suggested. Accelerator physics issues such as the luminosity are discussed. Applications of the present process to the current drive in a plasma and to the excitation of collective oscillations within nuclei are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
22

Wu, Ying, Changhai Yu, Zhiyong Qin, Wentao Wang, Zhijun Zhang, Rong Qi, Ke Feng, et al. "Energy Enhancement and Energy Spread Compression of Electron Beams in a Hybrid Laser-Plasma Wakefield Accelerator." Applied Sciences 9, no. 12 (June 23, 2019): 2561. http://dx.doi.org/10.3390/app9122561.

Full text
Abstract:
We experimentally demonstrated the generation of narrow energy-spread electron beams with enhanced energy levels using a hybrid laser-plasma wakefield accelerator. An experiment featuring two-color electron beams showed that after the laser pump reached the depletion length, the laser-wakefield acceleration (LWFA) gradually evolved into the plasma-driven wakefield acceleration (PWFA), and thereafter, the PWFA dominated the electron acceleration. The energy spread of the electron beams was further improved by energy chirp compensation. Particle-in-cell simulations were performed to verify the experimental results. The generated monoenergetic high-energy electron beams are promising to upscale future accelerator systems and realize monoenergetic γ -ray sources.
APA, Harvard, Vancouver, ISO, and other styles
23

Polozov, Sergey M., and Vladimir I. Rashchikov. "Longitudinal motion stability of electrons inside the plasma channel of LPWA." Cybernetics and Physics, Volume 7, 2018, Number 4 (December 23, 2018): 228–32. http://dx.doi.org/10.35470/2226-4116-2018-7-4-228-232.

Full text
Abstract:
The acceleration of electrons in laser-plasma channels is one of the contemporary ideas on the energy frontier of accelerators. Demands of low energy spectrum and emittance are especially important for discussed colliders and light sources based on acceleration in plasma channels. The idea to use a laser-plasma accelerator as injector for these installations instead of traditional RF linacs looks like as a very perceptive way to replace the conventional RF linac-injector or linac-driver by a very compact system. Therefore, the new results of beam dynamics simulations in laser-plasma channel having pre-bunching stage are discussed in paper. Main simulations were focused on the study of the longitudinal electron motion stability inside of the plasma channel. It was shown that the form and the value of the plasma potential well are essentially depend on laser pulse amplitude, form and duration. The electron beam dynamics, in turn, is specified by plasma potential well parameters, which define the electrons capturing into acceleration and output parameters of the bunch. Electrons loosed from the synchronous motions in the plasma wave are defocusing soon after falling out from the potential well and are pushed to the plasma channel wall.
APA, Harvard, Vancouver, ISO, and other styles
24

Zhao, Jie, Yan-Ting Hu, Hao Zhang, Yu Lu, Li-Xiang Hu, Fu-Qiu Shao, and Tong-Pu Yu. "Multistage Positron Acceleration by an Electron Beam-Driven Strong Terahertz Radiation." Photonics 10, no. 4 (March 24, 2023): 364. http://dx.doi.org/10.3390/photonics10040364.

Full text
Abstract:
Laser–plasma accelerators (LPAs) have been demonstrated as one of the candidates for traditional accelerators and have attracted increasing attention due to their compact size, high acceleration gradients, low cost, etc. However, LPAs for positrons still face many challenges, such as the beam divergence controlling, large energy spread, and complicated plasma backgrounds. Here, we propose a possible multistage positron acceleration scheme for high energy positron beam acceleration and propagation. It is driven by the strong coherent THz radiation generated when an injected electron ring beam passes through one or more solid targets. Multidimensional particle-in-cell simulations demonstrated that each acceleration stage is able to provide nearly 200 MeV energy gain for the positrons. Meanwhile, the positron beam energy spread can be controlled within 2%, and the beam emittance can be maintained during the beam acceleration and propagation. This may attract one’s interests in potential experiments on both large laser facilities and a traditional accelerator together with a laser system.
APA, Harvard, Vancouver, ISO, and other styles
25

Hakimi, Sahel, Xiaomei Zhang, Calvin Lau, Peter Taborek, Franklin Dollar, and Toshiki Tajima. "X-ray laser wakefield acceleration in a nanotube." International Journal of Modern Physics A 34, no. 34 (December 10, 2019): 1943011. http://dx.doi.org/10.1142/s0217751x19430115.

Full text
Abstract:
Plasma-based accelerator technology enables compact particle accelerators. In Laser Wakefield Acceleration, with an ultrafast high-intensity optical laser driver, energy gain of electrons is greater if the electron density is reduced. This is because the energy gain of electrons is proportional to the ratio of laser’s critical density to electron density. However, an alternative path for higher energy electrons is increasing the critical density via going to shorter wavelengths. With the advent of Thin Film Compression, we now see a path to a single cycle coherent X-ray beam. Using this X-ray pulse allows us to increase the plasma density to solid density nanotube (carbon or porous alumina) regime and still be under-dense for a Laser Wakefield Acceleration technique. We will discuss some implications of this below.
APA, Harvard, Vancouver, ISO, and other styles
26

Martinez de la Ossa, A., R. W. Assmann, M. Bussmann, S. Corde, J. P. Couperus Cabadağ, A. Debus, A. Döpp, et al. "Hybrid LWFA–PWFA staging as a beam energy and brightness transformer: conceptual design and simulations." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2151 (June 24, 2019): 20180175. http://dx.doi.org/10.1098/rsta.2018.0175.

Full text
Abstract:
We present a conceptual design for a hybrid laser-driven plasma wakefield accelerator (LWFA) to beam-driven plasma wakefield accelerator (PWFA). In this set-up, the output beams from an LWFA stage are used as input beams of a new PWFA stage. In the PWFA stage, a new witness beam of largely increased quality can be produced and accelerated to higher energies. The feasibility and the potential of this concept is shown through exemplary particle-in-cell simulations. In addition, preliminary simulation results for a proof-of-concept experiment in Helmholtz-Zentrum Dresden-Rossendorf (Germany) are shown. This article is part of the Theo Murphy meeting issue ‘Directions in particle beam-driven plasma wakefield acceleration’.
APA, Harvard, Vancouver, ISO, and other styles
27

Büscher, Markus, Anna Hützen, Ilhan Engin, Johannes Thomas, Alexander Pukhov, Jürgen Böker, Ralf Gebel, et al. "Polarized proton beams from a laser-plasma accelerator." International Journal of Modern Physics A 34, no. 36 (November 26, 2019): 1942028. http://dx.doi.org/10.1142/s0217751x19420284.

Full text
Abstract:
We report on the concept of an innovative laser-driven plasma accelerator for polarized proton (or deuteron) beams with a kinetic energy up to several GeV. In order to model the motion of the particle spins in the plasmas, these have been implemented as an additional degree of freedom into the Particle-in-Cell simulation code VLPL. For the experimental realization, a polarized HCl gas-jet target is under construction, where the degree of proton polarization is determined with a Lamb-shift polarimeter. The final experiments, aiming at the first observation of a polarized particle beam from laser-generated plasmas, will be carried out at the 10 PW laser system SULF at SIOM/Shanghai.
APA, Harvard, Vancouver, ISO, and other styles
28

Badziak, J., E. Krousky, J. Marczak, P. Parys, T. Pisarczyk, M. Rosiński, A. Sarzynski, et al. "Efficient acceleration of a dense plasma projectile to hyper velocities in the laser-induced cavity pressure acceleration scheme." Laser and Particle Beams 36, no. 1 (January 25, 2018): 49–54. http://dx.doi.org/10.1017/s0263034617000945.

Full text
Abstract:
AbstractThe experimental study of the plasma projectile acceleration in the laser-induced cavity pressure acceleration (LICPA) scheme is reported. In the experiment performed at the kilojoule PALS laser facility, the parameters of the projectile were measured using interferometry, a streak camera and ion diagnostics, and the measurements were supported by two-dimensional hydrodynamic simulations. It is shown that in the LICPA accelerator with a 200-J laser driver, a 4-μg gold plasma projectile is accelerated to the velocity of 140 km/s with the energetic acceleration efficiency of 15–19% which is significantly higher than those achieved with the commonly used ablative acceleration and the highest among the ones measured so far for any projectiles accelerated to the velocities ≥100 km/s. This achievement opens the possibility of creation and investigation of high-energy-density matter states with the use of moderate-energy lasers and may also have an impact on the development of the impact ignition approach to inertial confinement fusion.
APA, Harvard, Vancouver, ISO, and other styles
29

Hidding, Bernhard, Ralph Assmann, Michael Bussmann, David Campbell, Yen-Yu Chang, Sébastien Corde, Jurjen Couperus Cabadağ, et al. "Progress in Hybrid Plasma Wakefield Acceleration." Photonics 10, no. 2 (January 17, 2023): 99. http://dx.doi.org/10.3390/photonics10020099.

Full text
Abstract:
Plasma wakefield accelerators can be driven either by intense laser pulses (LWFA) or by intense particle beams (PWFA). A third approach that combines the complementary advantages of both types of plasma wakefield accelerator has been established with increasing success over the last decade and is called hybrid LWFA→PWFA. Essentially, a compact LWFA is exploited to produce an energetic, high-current electron beam as a driver for a subsequent PWFA stage, which, in turn, is exploited for phase-constant, inherently laser-synchronized, quasi-static acceleration over extended acceleration lengths. The sum is greater than its parts: the approach not only provides a compact, cost-effective alternative to linac-driven PWFA for exploitation of PWFA and its advantages for acceleration and high-brightness beam generation, but extends the parameter range accessible for PWFA and, through the added benefit of co-location of inherently synchronized laser pulses, enables high-precision pump/probing, injection, seeding and unique experimental constellations, e.g., for beam coordination and collision experiments. We report on the accelerating progress of the approach achieved in a series of collaborative experiments and discuss future prospects and potential impact.
APA, Harvard, Vancouver, ISO, and other styles
30

KITAGAWA, YONEYOSHI. "ELECTRON ACCELERATION IN A GLASS CAPILLARY AND ITS APPLICATION." International Journal of Modern Physics B 21, no. 03n04 (February 10, 2007): 540–47. http://dx.doi.org/10.1142/s0217979207042343.

Full text
Abstract:
The discussion how to accelerate electrons to GeV leads us to the concept of the capillary. The 40 TW laser with prepulses, guided into a 1 cm-long capillary has accelerated the electrons to 100 MeV. The prepulse-free PW laser was also guided into the longer capillary, which formed a 3 cm plasma channel, but the energy gain was only 40 MeV. The prepulse-free laser made it clear that the cone works as an electron seeder. Application of the capillary accelerator was finally discussed.
APA, Harvard, Vancouver, ISO, and other styles
31

Katsouleas, T., J. M. Dawson, D. Sultana, and Y. T. Yan. "A Side-Injected-Laser Plasma Accelerator." IEEE Transactions on Nuclear Science 32, no. 5 (October 1985): 3554–56. http://dx.doi.org/10.1109/tns.1985.4334426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Hooker, Simon M., Stuart Mangles, and Rajeev Pattathil. "Laser and Plasma Accelerator Workshop 2013." Plasma Physics and Controlled Fusion 56, no. 8 (July 22, 2014): 080301. http://dx.doi.org/10.1088/0741-3335/56/8/080301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Lumpkin, A. H. "Coherent optical transition radiation imaging for compact accelerator electron-beam diagnostics." International Journal of Modern Physics A 34, no. 34 (December 10, 2019): 1943013. http://dx.doi.org/10.1142/s0217751x19430139.

Full text
Abstract:
Application of coherent optical transition radiation (COTR) diagnostics to compact accelerators has been demonstrated for the laser-driven plasma accelerator case recently. It is proposed that such diagnostics for beam size, beam divergence, microbunching fraction, spectral content, and bunch length would be useful before and after any subsequent acceleration in crystals or nanostructures. In addition, there are indications that under some scenarios a microbunched beam could resonantly excite wake fields in nanostructures that might lead to an increased acceleration gradient.
APA, Harvard, Vancouver, ISO, and other styles
34

HOSOKAI, Tomonao, and Mitsuru UESAKA. "Accelerator for Medical Applications and Electron Acceleration by Laser Plasma." Review of Laser Engineering 34, no. 2 (2006): 162–68. http://dx.doi.org/10.2184/lsj.34.162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Di Mitri, Simone, and Giovanni Perosa. "Electron Beam Transport in Plasma-Accelerator-Driven Free-Electron Lasers in the Presence of Coherent Synchrotron Radiation and Microbunching Instability." Physics 2, no. 4 (September 30, 2020): 521–30. http://dx.doi.org/10.3390/physics2040029.

Full text
Abstract:
Laser- and beam-driven plasma accelerators promise electron beam brightness at the exit of plasma cells suitable for X-ray free-electron lasers. Beam transport from the accelerator to the undulator may include a multi-bend, energy-dispersive switchyard, in which energy collimators can be installed to protect the undulator or to serve multiple photon beamlines. Coherent synchrotron radiation and microbunching instability in the switchyard can seriously degrade the brightness of the accelerated beam, reducing the lasing efficiency. We present a semi-analytical analysis of those collective effects for beam parameters expected at the exit of state-of-the-art plasma accelerators. Prescriptions for the linear optics design used to minimize transverse and longitudinal beam instability are discussed.
APA, Harvard, Vancouver, ISO, and other styles
36

FOURKAL, E., I. VELTCHEV, and C. M. MA. "Laser-to-proton energy transfer efficiency in laser–plasma interactions." Journal of Plasma Physics 75, no. 2 (April 2009): 235–50. http://dx.doi.org/10.1017/s0022377808007460.

Full text
Abstract:
AbstractIt is shown that the energy of protons accelerated in laser–matter interaction experiments may be significantly increased through the process of splitting the incoming laser pulse into multiple interaction stages of equal intensity. From a thermodynamic point of view, the splitting procedure can be viewed as an effective way of increasing the efficiency of energy transfer from the laser light to protons, which peaks for processes having the least amount of entropy gain. It is predicted that it should be possible to achieve at least a 100% increase in the energy efficiency in a six-stage laser proton accelerator compared with a single laser–target interaction scheme.
APA, Harvard, Vancouver, ISO, and other styles
37

Stellato, Francesco, Maria Pia Anania, Antonella Balerna, Simone Botticelli, Marcello Coreno, Gemma Costa, Mario Galletti, et al. "Plasma-Generated X-ray Pulses: Betatron Radiation Opportunities at EuPRAXIA@SPARC_LAB." Condensed Matter 7, no. 1 (February 24, 2022): 23. http://dx.doi.org/10.3390/condmat7010023.

Full text
Abstract:
EuPRAXIA is a leading European project aimed at the development of a dedicated, ground-breaking, ultra-compact accelerator research infrastructure based on novel plasma acceleration concepts and laser technology and on the development of their users’ communities. Within this framework, the Laboratori Nazionali di Frascati (LNF, INFN) will be equipped with a unique combination of an X-band RF LINAC generating high-brightness GeV-range electron beams, a 0.5 PW class laser system and the first fifth-generation free electron laser (FEL) source driven by a plasma-based accelerator, the EuPRAXIA@SPARC_LAB facility. Wiggler-like radiation emitted by electrons accelerated in plasma wakefields gives rise to brilliant, ultra-short X-ray pulses, called betatron radiation. Extensive studies have been performed at the FLAME laser facility at LNF, INFN, where betatron radiation was measured and characterized. The purpose of this paper is to describe the betatron spectrum emitted by particle wakefield acceleration at EuPRAXIA@SPARC_LAB and provide an overview of the foreseen applications of this specific source, thus helping to establish a future user community interested in (possibly coupled) FEL and betatron radiation experiments. In order to provide a quantitative estimate of the expected betatron spectrum and therefore to present suitable applications, we performed simple simulations to determine the spectrum of the betatron radiation emitted at EuPRAXIA@SPARC_LAB. With reference to experiments performed exploiting similar betatron sources, we highlight the opportunities offered by its brilliant femtosecond pulses for ultra-fast X-ray spectroscopy and imaging measurements, but also as an ancillary tool for designing and testing FEL instrumentation and experiments.
APA, Harvard, Vancouver, ISO, and other styles
38

Uesaka, Mitsuru, and Kazuyoshi Koyama. "Advanced Accelerators for Medical Applications." Reviews of Accelerator Science and Technology 09 (January 2016): 235–60. http://dx.doi.org/10.1142/s1793626816300115.

Full text
Abstract:
We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.
APA, Harvard, Vancouver, ISO, and other styles
39

Lee, Sihyeon, Seong-hoon Kwon, Inhyuk Nam, Myung-Hoon Cho, Dogeun Jang, Hyyong Suk, and Minseok Kim. "One-Body Capillary Plasma Source for Plasma Accelerator Research at e-LABs." Applied Sciences 13, no. 4 (February 16, 2023): 2564. http://dx.doi.org/10.3390/app13042564.

Full text
Abstract:
We report on the development of a compact, gas-filled capillary plasma source for plasma accelerator applications. The one-body sapphire capillary was created through a diamond machining technique, which enabled a straightforward and efficient manufacturing process. The effectiveness of the capillary as a plasma acceleration source was investigated through laser wakefield acceleration experiments with a helium-filled gas cell, resulting in the production of stable electron beams of 200 MeV. Discharge capillary plasma was generated using a pulsed, high-voltage system for potential use as an active plasma lens. A peak current of 140 A, corresponding to a focusing gradient of 97 T/m, was observed at a voltage of 10 kV. These results demonstrate the potential utility of the developed capillary plasma source in plasma accelerator research using electron beams from a photocathode gun.
APA, Harvard, Vancouver, ISO, and other styles
40

WANG, X., R. ZGADZAJ, S. A. YI, V. KHUDIK, W. HENDERSON, N. FAZEL, Y. Y. CHANG, et al. "Self-injected petawatt laser-driven plasma electron acceleration in 1017 cm−3 plasma." Journal of Plasma Physics 78, no. 4 (April 12, 2012): 413–19. http://dx.doi.org/10.1017/s002237781200030x.

Full text
Abstract:
AbstractWe report production of a self-injected, collimated (8 mrad divergence), 600 pC bunch of electrons with energies up to 350 MeV from a petawatt laser-driven plasma accelerator in a plasma of electron density ne = 1017 cm−3, an order of magnitude lower than previous self-injected laser-plasma accelerators. The energy of the focused drive laser pulse (150 J, 150 fs) was distributed over several hot spots. Simulations show that these hot spots remained independent over a 5 cm interaction length, and produced weakly nonlinear plasma wakes without bubble formation capable of accelerating pre-heated (~1 MeV) plasma electrons up to the observed energies. The required pre-heating is attributed tentatively to pre-pulse interactions with the plasma.
APA, Harvard, Vancouver, ISO, and other styles
41

Alotaibi, B. M., Sh M. Khalil, B. W. J. McNeil, and Piotr Traczykowski. "Modelling a laser plasma accelerator driven free electron laser." Journal of Physics Communications 3, no. 6 (June 24, 2019): 065007. http://dx.doi.org/10.1088/2399-6528/ab291b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Galletti, Mario, Maria Pia Anania, Sahar Arjmand, Angelo Biagioni, Gemma Costa, Martina Del Giorno, Massimo Ferrario, et al. "Advanced Stabilization Methods of Plasma Devices for Plasma-Based Acceleration." Symmetry 14, no. 3 (February 24, 2022): 450. http://dx.doi.org/10.3390/sym14030450.

Full text
Abstract:
Towards the next generation of compact plasma-based accelerators, useful in several fields, such as basic research, medicine and industrial applications, a great effort is required to control the plasma creation, the necessity of producing a time-jitter free channel, and its stability namely uniformity and reproducibility. In this Letter, we describe an experimental campaign adopting a gas-filled discharge-capillary where the plasma and its generation are stabilized by triggering its ignition with an external laser pulse or an innovative technique based on the primary dark current (DC) in the accelerating structure of a linear accelerator (LINAC). The results show an efficient stabilization of the discharge pulse and plasma density with both pre-ionizing methods turning the plasma device into a symmetrical stable accelerating environment, especially when the external voltage is lowered near the breakdown value of the gas. The development of tens of centimeter long capillaries is enabled and, in turn, longer acceleration lengths can be adopted in a wide range of plasma-based acceleration experiments.
APA, Harvard, Vancouver, ISO, and other styles
43

Najmudin, Z., S. Kneip, M. S. Bloom, S. P. D. Mangles, O. Chekhlov, A. E. Dangor, A. Döpp, et al. "Compact laser accelerators for X-ray phase-contrast imaging." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, no. 2010 (March 6, 2014): 20130032. http://dx.doi.org/10.1098/rsta.2013.0032.

Full text
Abstract:
Advances in X-ray imaging techniques have been driven by advances in novel X-ray sources. The latest fourth-generation X-ray sources can boast large photon fluxes at unprecedented brightness. However, the large size of these facilities means that these sources are not available for everyday applications. With advances in laser plasma acceleration, electron beams can now be generated at energies comparable to those used in light sources, but in university-sized laboratories. By making use of the strong transverse focusing of plasma accelerators, bright sources of betatron radiation have been produced. Here, we demonstrate phase-contrast imaging of a biological sample for the first time by radiation generated by GeV electron beams produced by a laser accelerator. The work was performed using a greater than 300 TW laser, which allowed the energy of the synchrotron source to be extended to the 10–100 keV range.
APA, Harvard, Vancouver, ISO, and other styles
44

van der Wiel, M. J., O. J. Luiten, G. J. H. Brussaard, S. B. van der Geer, W. H. Urbanus, W. van Dijk, and Th van Oudheusden. "Laser wakefield acceleration: the injection issue. Overview and latest results." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1840 (January 24, 2006): 679–87. http://dx.doi.org/10.1098/rsta.2005.1731.

Full text
Abstract:
External injection of electron bunches into laser-driven plasma waves so far has not resulted in ‘controlled’ acceleration, i.e. production of bunches with well-defined energy spread. Recent simulations, however, predict that narrow distributions can be achieved, provided the conditions for properly trapping the injected electrons are met. Under these conditions, injected bunch lengths of one to several plasma wavelengths are acceptable. This paper first describes current efforts to demonstrate this experimentally, using state-of-the-art radio frequency technology. The expected charge accelerated, however, is still low for most applications. In the second part, the paper addresses a number of novel concepts for significant enhancement of photo-injector brightness. Simulations predict that, once these concepts are realized, external injection into a wakefield accelerator will lead to accelerated bunch specs comparable to those of recent ‘laser-into-gasjet’ experiments, without the present irreproducibility of charge and final energy of the latter.
APA, Harvard, Vancouver, ISO, and other styles
45

Saberi, Hossein, Guoxing Xia, Mohammad R. Islam, Linbo Liang, and Can Davut. "Radiation reaction and its impact on plasma-based energy-frontier colliders." Physics of Plasmas 30, no. 4 (April 2023): 043104. http://dx.doi.org/10.1063/5.0140525.

Full text
Abstract:
Energy-frontier TeV colliders based on plasma accelerators are attracting much attention due to the recent achievements in multi-stage laser acceleration as well as the remarkable advances in electron- and proton-driven plasma accelerators. Such colliders may suffer a fundamental energy loss due to the radiation reaction (RR) effect, as the electrons lose energy through betatron radiation emission. Although the RR may not be critical for low-energy accelerators, it will exert limitations on TeV-class plasma-based colliders that need to be considered. In this paper, we have provided an extensive study of the RR effect in all pathways toward such colliders, including multi-stage plasma acceleration driven by the state-of-the-art lasers and the relativistic electron beam as well as the single-stage plasma acceleration with the energetic proton beams available at the CERN accelerator complex. A single-particle Landau–Lifschitz approach is used to consider the RR effect on an electron accelerating in the plasma blow-out regime. The model determines the boundaries where RR plays an energy limiting role on such colliders. The energy gain, the radiation loss, and the validity of the model are numerically explored.
APA, Harvard, Vancouver, ISO, and other styles
46

Horton, W., and T. Tajima. "Laser beat-wave accelerator and plasma noise." Physical Review A 31, no. 6 (June 1, 1985): 3937–46. http://dx.doi.org/10.1103/physreva.31.3937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Dubenkov, V., B. Sharkov, A. Golubev, A. Shumshurov, O. Shamaev, I. Roudskoy, A. Streltsov, et al. "Acceleration of Ta10+ ions produced by laser ion source in RFQ MAXILAC." Laser and Particle Beams 14, no. 3 (September 1996): 385–92. http://dx.doi.org/10.1017/s0263034600010107.

Full text
Abstract:
Demonstration of matching a laser ion source to the GSI RFQ-Maxilac linear accelerator and the acceleration of a 1.8-mA current beam of Ta10+ ions up to 45 keV/u energy is presented. A 10J/μs CO2 laser has been used to produce a hot plasma plume, emitting highly charged tantulum ions. The correct geometry and potential distribution of the matching section has been designed in accordance with the results of computer simulations by using the AXCEL code. Measurements of the charge state distribution of the accelerated beam indicate that it contains about 70% Ta10+ and 30% Ta11+ ions.
APA, Harvard, Vancouver, ISO, and other styles
48

Ashanina, I. A., Yu D. Kluchevskaia, S. M. Polozov, and V. I. Rashchikovd. "Optimization of electrodynamic characteristics of the linear electron accelerator at an energy 8–50 MeV with injection from an electron source based on cluster plasma systems." Seriya 3: Fizika, Astronomiya, no. 1_2023 (June 2, 2023): 2310402–1. http://dx.doi.org/10.55959/msu0579-9392.78.2310402.

Full text
Abstract:
One of the key problems of contemporary accelerator physics has been an increase of the rate of the energy gain in linear electron accelerators. The physical limits of the accelerating field intensity for the normal and superconducting accelerating structures have been practically reached; therefore, new acceleration schemes are being considered, primarily acceleration in plasma and wakefield acceleration. It is suggested to consider an opportunity using of a bunch generated in a laser-plasma channel for injection into a traditional metal structure. It has been shown that an electron source based on a cluster plasma can generate a short (from 0.1 to 1.0 ps) electron bunch with an energy of several hundred keV, which makes it possible to consider such a source as an alternative to a photocathode. Next, the beam must be captured in the acceleration mode and accelerated up to an energy of 50 MeV with the possibility of energy tuning. The features of such accelerator, the features of the electron bunch capturing in the acceleration mode, and the possible values of the energy spectrum in such a system will considered. The features of such a source, including the possible energy spectrum, the features of the electron bunch capturing with an extremely wide spectrum in the acceleration mode, as well as the electrodynamic characteristics of the accelerating structures are considered in the paper. The beam dynamics simulation was carried out using the BEAMDULAC package developed at the Department of Electrophysical Facilities of the National Research Nuclear University MEPhI. The main results of the optimization of electrodynamic characteristics of the accelerating structures was also reported.
APA, Harvard, Vancouver, ISO, and other styles
49

Kaur, M., and D. N. Gupta. "Electron energy optimization by plasma density ramp in laser wakefield acceleration in bubble regime." Laser and Particle Beams 36, no. 2 (June 2018): 195–202. http://dx.doi.org/10.1017/s0263034618000162.

Full text
Abstract:
AbstractEnergy gain of electron beams in bubble regime of the laser wakefield accelerator can be optimized by improving the acceleration length, radial accelerating and focusing force, number of monoenergetic electrons trapped inside the bubble, and increasing dephasing length. In order to enlarge the dephasing length, the phase velocity of the plasma wave can be increased by optimizing the plasma density profile. We report the estimation of dephasing length using plasma density distribution with the flat and linear-upward profile using two-dimensional particle-in-cell simulations. The size of wakefield bubble depends on the plasma density. With a positive plasma density gradient, the size of bubble decreases. The front and trail part of wake bubble will have different phase velocity in plasma density gradient region. After density transition in constant density region, the bubble elongates and the velocity of the back part of the bubble increases so that the accelerated electron phase synchronizes with the phase of the plasma wave. In a result, the electron acceleration length enhances to improve the beam quality.
APA, Harvard, Vancouver, ISO, and other styles
50

Williams, R. L., C. E. Clayton, C. Joshi, T. Katsouleas, and W. B. Mori. "Studies of relativistic wave–particle interactions in plasma-based collective accelerators." Laser and Particle Beams 8, no. 3 (September 1990): 427–49. http://dx.doi.org/10.1017/s0263034600008673.

Full text
Abstract:
The interaction of externally injected charged particles (electrons) with plasma waves moving with a phase velocity that is very close to the speed of light is examined. Such plasma waves form the basis of at least three collective accelerator schemes: the plasma beat wave accelerator (PBWA), the plasma wake-field accelerator (PWFA), and the laser wake-field accelerator (LWFA). First, the electron trapping threshold, energy gain and acceleration length are examined using a 1-D model. This model elucidates how the final energies of the injected test electrons depend upon their injection and extraction phases and phase slippage. Phase energy diagrams are shown to be extremely useful in visualizing wave-particle interactions in 1-D. Second, we examine, using a two-dimensional model, the effects of radial electric fields on focusing or defocusing the injected particles depending upon their radial positions and phases in the relativistically moving potential well. Finally, we extend the model to 3-D so that the effect of injected particles' emittance on the acceleration process may be determined. This simple 3-D model will be extremely useful in predicting the electron energy spectra of several current experiments designed to demonstrate ultrahigh gradient acceleration of externally injected test particles by relativistic plasma waves.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography