To see the other types of publications on this topic, follow the link: Laser solide.

Journal articles on the topic 'Laser solide'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Laser solide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Aubert, J. J., Ch Wyon, A. Cassimi, V. Hardy, and J. Hamel. "UN laser solide accordable pompe par diode." Optics Communications 69, no. 3-4 (January 1989): 299–302. http://dx.doi.org/10.1016/0030-4018(89)90120-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

COQUERELLE, G., M. COLLIN, J. P. MASSOUD, and J. L. FACHINETTI. "TRAITEMENTS DE SURFACE PAR LASER EN PHASE SOLIDE." Le Journal de Physique Colloques 48, no. C7 (December 1987): C7–105—C7–110. http://dx.doi.org/10.1051/jphyscol:1987717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kachanov, A., D. Romanini, E. Lacot, F. Stoeckel, and D. Barbier. "Perte de la mémoire spectrale dans un laser solide très multimode." Annales de Physique 20, no. 5-6 (1995): 569–70. http://dx.doi.org/10.1051/anphys:199556015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sommer, Andrei P., Adam R. Mester, and Mario A. Trelles. "Licht ins Dunkel: Die wichtigsten Parameter für die therapeutische Anwendung von Laser und LED." Hands on - Manuelle und Physikalische Therapien in der Tiermedizin 05, no. 04 (December 2023): 164–68. http://dx.doi.org/10.1055/a-2216-6139.

Full text
Abstract:
Das Angebot an therapeutischen Laser- und LED-Geräten ist groß und unübersichtlich. Doch welches ist für welche Zwecke am besten geeignet und vor allem: Wie und warum wirkt es? Um sich im Dschungel an unterschiedlichen Informationen und Angeboten zurechtzufinden, ist es hilfreich, auf ein fundiertes Verständnis der physikalischen Grundlagen sowie Kenntnisse über die aktuelle Evidenzlage zurückgreifen zu können. Damit legt man eine solide Basis für informierte Entscheidungen. Der nachfolgende „Kompass“ erklärt die wichtigsten Parameter und Hintergründe.
APA, Harvard, Vancouver, ISO, and other styles
5

Skipetrov, Sergey. "Localisation d’Anderson de la lumière." Photoniques, no. 108 (May 2021): 24–27. http://dx.doi.org/10.1051/photon/202110824.

Full text
Abstract:
Un tas de poussière capable de capturer la lumière plus efficacement qu’une cavité Fabry-Perot finement réglée ? Un laser qui n’a pas besoin de réglage et dont la structure est aléatoire ? Tout cela peut devenir possible grâce au phénomène découvert par Philip Anderson il y a plus de 60 ans. Les idées apparues en physique du solide sont aujourd’hui exploitées par les opticiens qui essayent de tirer profit de la nature aléatoire de nombreux matériaux.
APA, Harvard, Vancouver, ISO, and other styles
6

Hugonnot, E., J. P. Delville, and A. Ducasse. "Réseaux de diffraction permanents modulables engendrés par des transitions liquide/solide locales induites par laser." Le Journal de Physique IV 10, PR8 (May 2000): Pr8–115. http://dx.doi.org/10.1051/jp4:2000819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nicolas, S., Y. Guyot, M. F. Joubert, and E. Descroix. "Potentialités de cristaux dopés Pr3+ pour la réalisation de sources laser à solide UV accordables." Le Journal de Physique IV 11, PR7 (October 2001): Pr7–57—Pr7–60. http://dx.doi.org/10.1051/jp4:2001720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liu Jingyi, 刘婧仪, 王荣 Wang Rong, 李旭 Li Xu, 郑佳盼 Zheng Jiapan, 徐洪浩 Xu Honghao, 韩文娟 Han Wenjuan, 张玉霞 Zhang Yuxia, and 刘均海 Liu Junhai. "基于Dy‑Tb∶LuLiF4晶体的全固态黄光连续及脉冲激光特性研究." Chinese Journal of Lasers 50, no. 22 (2023): 2201006. http://dx.doi.org/10.3788/cjl230566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhaoshuo Tian, Zhaoshuo Tian, Hongling Cheng Hongling Cheng, Ping Xu Ping Xu, Xingbao Zhang Xingbao Zhang, and Shiyou Fu Shiyou Fu. "Laser output of radial-slab solid-state laser." Chinese Optics Letters 11, no. 4 (2013): 041404–41406. http://dx.doi.org/10.3788/col201311.041404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hughes, D. W., and J. R. M. Barr. "Laser diode pumped solid state lasers." Journal of Physics D: Applied Physics 25, no. 4 (April 14, 1992): 563–86. http://dx.doi.org/10.1088/0022-3727/25/4/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Byer, R. L. "Diode Laser--Pumped Solid-State Lasers." Science 239, no. 4841 (February 12, 1988): 742–47. http://dx.doi.org/10.1126/science.239.4841.742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Fan, T. Y., and R. L. Byer. "Diode laser-pumped solid-state lasers." IEEE Journal of Quantum Electronics 24, no. 6 (June 1988): 895–912. http://dx.doi.org/10.1109/3.210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Li, Dehui, Jun Zhang, and Qihua Xiong. "Demonstration of Net Laser Cooling in a Semiconductor." Asia Pacific Physics Newsletter 02, no. 02 (August 2013): 27–28. http://dx.doi.org/10.1142/s2251158x1300026x.

Full text
Abstract:
Laser cooling of solids was first proposed by Pringsheim in 1929, more than 30 years before the invention of laser. With the advantages of being compact and free of vibration and cryogen, the laser cooling of solids shows very promising applications such as all solid-state cryocoolers and atheraml lasers. The basic principle of laser cooling in solids is based on the anti-Stokes luminescence, during which the emitted photons carry more energy than the incident photons. The thermal energy contained in lattice vibrations in solids is carried away by the emitted photons during the anti-Stokes luminescence processes resulting in the cooling of solids. To achieve net laser cooling, there are very strict requirements for materials: high external quantum efficiency, high crystalline quality and properly spaced energy levels. So far, the materials suitable for laser cooling are confined to rare-earth doped glasses or direct band gap semiconductors due to those special requirements.
APA, Harvard, Vancouver, ISO, and other styles
14

TSUNEKANE, Masaki, and Takunori TAIRA. "Practical Solid-State Lasers for Laser Ignition." Review of Laser Engineering 42, no. 5 (2014): 394. http://dx.doi.org/10.2184/lsj.42.5_394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Valle, Valéry, Mario Cottron, and Alexis Lagarde. "Utilisation du phénomène de diffraction sous incidence oblique d'un faisceau laser par un réseau croisé pour la mesure locale en statique et dynamique des déformations et des mouvements de solide." Mechanics Research Communications 22, no. 2 (March 1995): 103–7. http://dx.doi.org/10.1016/0093-6413(95)00001-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Li Rongtao, 李溶涛, 孟俊清 Meng Junqing, 陈晓 Chen Xiao, and 陈卫标 Chen Weibiao. "VCSEL端面泵浦的全固体激光器." Chinese Journal of Lasers 49, no. 18 (2022): 1801002. http://dx.doi.org/10.3788/cjl202249.1801002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Liu Wenwen, 刘雯雯, 苏伟 Su Wei, 罗文豪 Luo Wenhao, 李健坷 Li Jianke, and 刘人怀 Liu Renhuai. "中红外固体激光器的振动可靠性." Infrared and Laser Engineering 50, no. 4 (2021): 20200242. http://dx.doi.org/10.3788/irla20200242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Chen Yilan, 陈忆兰, 刘继桥 Liu Jiqiao, 王明建 Wang Mingjian, and 朱小磊 Zhu Xiaolei. "310 nm紫外固体拉曼激光器." Chinese Journal of Lasers 50, no. 22 (2023): 2201005. http://dx.doi.org/10.3788/cjl230542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Yilbas, B. S., and N. Al-Aqeeli. "Formulation of laser-induced thermal stresses: Stress boundary at the surface." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 217, no. 4 (April 1, 2003): 423–34. http://dx.doi.org/10.1243/095440603321509702.

Full text
Abstract:
Laser heating of solids results in a high-temperature gradient inside the substrate material. This, in turn, results in high stress levels in the region irradiated by a laser beam. In the present study, laser heating of solid substrate is formulated and a closed-form solution for the stress field inside the substrate material is obtained. Time exponentially decaying laser pulse intensity is employed in the analysis. In order to account for the recoil pressure effect on the resulting stress field, the stress boundary at the solid surface is employed in the analysis. The Laplace transformation method is used when deriving the closed-form solutions. It is found that a stress wave propagates into the solid bulk with a wave speed c1. The amplitude of the stress wave reduces as the distance from the substrate increases towards the solid bulk. The occurrence of peak stress inside the substrate material differes for the stress-free boundary and the stress boundary at the free surface cases.
APA, Harvard, Vancouver, ISO, and other styles
20

Matnazarov, A., I. Davletov, and A. Japakov. "Upgraded Experimental Apparatus for the Detection and Investigation of Multiply Charged Ions of a Laser Plasma." Bulletin of Science and Practice 6, no. 9 (September 15, 2020): 198–203. http://dx.doi.org/10.33619/2414-2948/58/19.

Full text
Abstract:
The article analyses about the usage of a modernized experimental setup for studying the interaction of laser radiation with solids at different angles of incidence. To register and investigation the spectrum of the nuclei in the elements under study, a solid-state neodymium laser operating was used in a mono-pulse mode.
APA, Harvard, Vancouver, ISO, and other styles
21

Boukhaoui, Djamila, Said Idlahcen, Jonathan Houard, Ivan Blum, Thomas Godin, Foued Amrani, Frédéric Gérôme, Fetah Benabid, Angela Vella, and Ammar Hideur. "High energy 50 fs fiber-based laser system for high harmonics generation in solids." EPJ Web of Conferences 287 (2023): 08010. http://dx.doi.org/10.1051/epjconf/202328708010.

Full text
Abstract:
We report on a high energy ultrafast fibre laser architecture designed for high harmonics generation in solids. The laser delivering 50 fs pulses with 2.12 µJ at 1550 nm has enabled the generation of harmonics up to harmonic H5 from a magnesium oxide (MgO) bulk sample. To the best of our knowledge this is the first solid-state HHG source driven by a µJ-class few-cycle fiber laser in the mid-IR region.
APA, Harvard, Vancouver, ISO, and other styles
22

Wagner, A., M. Lütke, A. Wetzig, and L. M. Eng. "Laser remote-fusion cutting with solid-state lasers." Journal of Laser Applications 25, no. 5 (November 2013): 052004. http://dx.doi.org/10.2351/1.4816651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Chen Feng, 陈峰, and 李子琦 Li Ziqi. "Solid-State Waveguide Lasers Based on Laser Crystals." Chinese Journal of Lasers 47, no. 5 (2020): 0500008. http://dx.doi.org/10.3788/cjl202047.0500008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Meng Xin, 孟鑫, 王丽 Wang Li, 王静静 Wang Jingjing, and 毛桂林 Mao Guilin. "全固态266 nm激光拉曼光谱仪研究." Acta Optica Sinica 41, no. 15 (2021): 1530002. http://dx.doi.org/10.3788/aos202141.1530002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Dong, Xiaomei, Yuhan Du, Miaohua Xu, Yutong Li, Zhe Zhang, and Yingjun Li. "Effects of laser waveform on the generation of fast electrons in laser–solid interactions." Chinese Optics Letters 21, no. 6 (2023): 063801. http://dx.doi.org/10.3788/col202321.063801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Youhua Jia, Youhua Jia, Biao Zhong Biao Zhong, and Jianping Yin Jianping Yin. "Mechanism of refrigeration cycle on laser cooling of solids." Chinese Optics Letters 10, no. 3 (2012): 031401–31404. http://dx.doi.org/10.3788/col201210.031401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Abdujaborovich, Ruziev Kurbanali. "TECHNOLOGICAL ADVANCEMENTS IN SOLID-STATE LASERS AND FIBER LASERS." American Journal of Social Science and Education Innovations 6, no. 3 (March 1, 2024): 32–34. http://dx.doi.org/10.37547/tajssei/volume06issue03-05.

Full text
Abstract:
In this article through a comprehensive investigation combining theoretical modeling, material synthesis, and empirical analysis, we identify key material properties that significantly influence laser efficiency and stability. Our research focuses on the exploration of new dopants, host materials, and fabrication techniques to achieve optimal thermal management, higher damage thresholds, and improved lasing efficiencies.
APA, Harvard, Vancouver, ISO, and other styles
28

Bianco, Nicola, Oronzio Manca, Sergio Nardini, and Salvatore Tamburino. "Transient Heat Conduction in Solids Irradiated by a Moving Heat Source." Defect and Diffusion Forum 283-286 (March 2009): 358–63. http://dx.doi.org/10.4028/www.scientific.net/ddf.283-286.358.

Full text
Abstract:
Transient three-dimensional temperature distribution in a solid irradiated by a moving Gaussian laser beam was investigated numerically by means of COMSOL Multiphysics 3.3. The investigated work-piece are simply brick-type solids. A laser source is considered moving with constant velocity along the motion direction. The solid dimension along the motion direction is assumed as semi-infinite while width and thickness are considered finite. Several different grid distributions are tested to ensure that the calculated results are grid independent. Typical parameters involved in the processes for any particular application should be evaluated, in order to optimize the material processing and forecast the solid behavior. The results are presented in terms of temperature profiles and thermal fields are given for some Biot and Peclet numbers.
APA, Harvard, Vancouver, ISO, and other styles
29

Li, Wenkai, Zhe Liu, Beijie Shao, Junyu Qian, Yanyan Li, Yujie Peng, and Yuxin Leng. "Angle-resolved high-order harmonics in wurtzite-type ZnO." Journal of Applied Physics 132, no. 12 (September 28, 2022): 123102. http://dx.doi.org/10.1063/5.0098582.

Full text
Abstract:
High-order harmonics in solids provide a method of analyzing the intraband and interband dynamics of a solid driven by an ultrafast laser. This study analyzed the contributions of intraband and interband dynamics based on angle-resolved high-order harmonics. According to the simulations and experiments, we found that the angular divergences of the harmonics have an evident boundary at the bandgap when the laser is polarized along the asymmetric direction, which is primarily invoked by the interplay of an interband transition and an intraband electron movement, and the intraband and interband dynamics have different sensitivities of the spatial phase of driving laser.
APA, Harvard, Vancouver, ISO, and other styles
30

CHEN Kai, 陈锴, 徐德刚 XU Degang, 贺奕焮 HE Yixin, 钟凯 ZHONG Kai, 李吉宁 LI Jining, 王与烨 WANG Yuye, and 姚建铨 YAO Jianquan. "近红外激光泵浦的可调谐中红外固体激光器研究进展(特邀)." ACTA PHOTONICA SINICA 52, no. 9 (2023): 0914001. http://dx.doi.org/10.3788/gzxb20235209.0914001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

YAMANAKA, Masanobu. "Market forecast of laser diode pumped solid-state lasers." Review of Laser Engineering 18, no. 8 (1990): 692–96. http://dx.doi.org/10.2184/lsj.18.8_692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

UEHARA, Kiyoji. "Tunable Solid-state Laser. Spectroscopy Experiments with Ti:sapphire Lasers." Review of Laser Engineering 23, no. 10 (1995): 858–63. http://dx.doi.org/10.2184/lsj.23.858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

KUBOTA, Keiichi. "Micro-Processing by Diode-Laser Pumped Solid-State Lasers." Review of Laser Engineering 28, no. 1 (2000): 3–8. http://dx.doi.org/10.2184/lsj.28.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

HASHIMOTO, Kohei, and Fumihiko KANNARI. "GaN Diode Laser Pumped Pr3+-Doped Solid-State Lasers." Review of Laser Engineering 36, no. 4 (2008): 200–205. http://dx.doi.org/10.2184/lsj.36.200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sheng, Zheng-Ming, Su-Ming Weng, Lu-Le Yu, Wei-Min Wang, Yun-Qian Cui, Min Chen, and Jie Zhang. "Absorption of ultrashort intense lasers in laser–solid interactions." Chinese Physics B 24, no. 1 (January 2015): 015201. http://dx.doi.org/10.1088/1674-1056/24/1/015201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Reisgen, Uwe, Simon Olschok, and Stefan Jakobs. "Laser Submerged Arc Welding (LUPuS) with Solid State Lasers." Physics Procedia 56 (2014): 653–62. http://dx.doi.org/10.1016/j.phpro.2014.08.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Grechin, Sergei G., and P. P. Nikolaev. "Diode-side-pumped laser heads for solid-state lasers." Quantum Electronics 39, no. 1 (January 31, 2009): 1–17. http://dx.doi.org/10.1070/qe2009v039n01abeh013787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Krukpe, William F. "New laser materials for diode pumped solid state lasers." Current Opinion in Solid State and Materials Science 4, no. 2 (April 1999): 197–201. http://dx.doi.org/10.1016/s1359-0286(99)00003-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Riechel, S., U. Lemmer, J. Feldmann, T. Benstem, W. Kowalsky, U. Scherf, A. Gombert, and V. Wittwer. "Laser modes in organic solid-state distributed feedback lasers." Applied Physics B 71, no. 6 (December 2000): 897–900. http://dx.doi.org/10.1007/s003400000467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Laporta, P., and M. Brussard. "Misalignment sensitivity of laser-diode pumped solid-state lasers." Optics Communications 85, no. 1 (August 1991): 47–53. http://dx.doi.org/10.1016/0030-4018(91)90050-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Campbell, John H., Joseph S. Hayden, and Alex Marker. "High-Power Solid-State Lasers: a Laser Glass Perspective." International Journal of Applied Glass Science 2, no. 1 (February 22, 2011): 3–29. http://dx.doi.org/10.1111/j.2041-1294.2011.00044.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Malcolm, G. P. A., and A. I. Ferguson. "Mode-locking of diode laser-pumped solid-state lasers." Optical and Quantum Electronics 24, no. 7 (July 1992): 705–17. http://dx.doi.org/10.1007/bf00620151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

KAN, Hirofumi, Takeshi KANZAKI, Hirofumi MIYAJIMA, Yukihiro ITO, and Teruo HIRUMA. "Laser-Diode Pumped High Power Solid-State Lasers. High Power Laser Diode Arrays." Review of Laser Engineering 24, no. 3 (1996): 334–42. http://dx.doi.org/10.2184/lsj.24.334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zhang Caowei, 张曹伟, 葛鸿浩 Ge Honghao, 方豪 Fang Hao, 张群莉 Zhang Qunli, and 姚建华 Yao Jianhua. "溶质再分配系数对激光熔覆溶质分布的影响." Chinese Journal of Lasers 49, no. 2 (2022): 0202012. http://dx.doi.org/10.3788/cjl202249.0202012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

E, Yiwen, Liangliang Zhang, Anton Tcypkin, Sergey Kozlov, Cunlin Zhang, and X. C. Zhang. "Broadband THz Sources from Gases to Liquids." Ultrafast Science 2021 (July 7, 2021): 1–17. http://dx.doi.org/10.34133/2021/9892763.

Full text
Abstract:
Matters are generally classified within four states: solid, liquid, gas, and plasma. Three of the four states of matter (solid, gas, and plasma) have been used for THz wave generation with short laser pulse excitation for decades, including the recent vigorous development of THz photonics in gases (air plasma). However, the demonstration of THz generation from liquids was conspicuously absent. It is well known that water, the most common liquid, is a strong absorber in the far infrared range. Therefore, liquid water has historically been sworn off as a source for THz radiation. Recently, broadband THz wave generation from a flowing liquid target has been experimentally demonstrated through laser-induced microplasma. The liquid target as the THz source presents unique properties. Specifically, liquids have the comparable material density to that of solids, meaning that laser pulses over a certain area will interact with three orders more molecules than an equivalent cross-section of gases. In contrast with solid targets, the fluidity of liquid allows every laser pulse to interact with a fresh area on the target, meaning that material damage or degradation is not an issue with the high-repetition rate intense laser pulses. These make liquids very promising candidates for the investigation of high-energy-density plasma, as well as the possibility of being the next generation of THz sources.
APA, Harvard, Vancouver, ISO, and other styles
46

Vasylyev, M., M. M. Nishenko, Sergey I. Sidorenko, and S. M. Voloshko. "Solid-Phase Diffusion Interaction in Multilayer Thin-Film System Cr/Cu/Ni at Pulse Laser Heating." Defect and Diffusion Forum 272 (March 2008): 31–40. http://dx.doi.org/10.4028/www.scientific.net/ddf.272.31.

Full text
Abstract:
The laser-induced mass transfer in thin-film substrate /Cr/Cu/Ni system is studied by means of Auger Electron Spectroscopy (AES). For the laser-pulse energy values, E = 100-170mJ, the diffusion of Cu atoms into Ni layer and their accumulation within this layer are observed, whereas at E > 170mJ the same is true for Cr atoms. The observed phenomena are explained on the basis of calculated temperature distribution in the system at issue during lased action. Enhanced transfer of Cr atoms towards external surface is observed under the irradiation regimes leading to the melting of intermediate copper layer. Diffusion coefficients of copper and chromium calculated from their surface accumulation show an exponential dependence on the laser-pulse energy. Under laser heating, the diffusion processes are more manifested as compared with those under conventional thermal annealing. This is bound up with higher concentration of nonequilibrium defects generated within the irradiation zone.
APA, Harvard, Vancouver, ISO, and other styles
47

Yang, Zixin, Lili Han, Qi Yang, Xianghe Ren, Syed Zaheer Ud Din, Xiaoyan Zhang, Jiancai Leng, et al. "Two-dimensional tellurium saturable absorber for ultrafast solid-state laser." Chinese Optics Letters 19, no. 3 (2021): 031401. http://dx.doi.org/10.3788/col202119.031401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sun Guangwei, 孙广伟, 辛国锋 Xin Guofeng, 朱韧 Zhu Ren, 陈迪俊 Chen Dijun, 冯盼 Feng Pan, 侯霞 Hou Xia, 蔡海文 Cai Haiwen, and 陈卫标 Chen Weibiao. "小型全光纤耦合非平面环形腔固体激光器." Chinese Journal of Lasers 49, no. 13 (2022): 1301002. http://dx.doi.org/10.3788/cjl202249.1301002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wang Jinyan, 王金艳, 李世杰 Li Shijie, 刘天红 Liu Tianhong, 郑权 Zheng Quan, 陈曦 Chen Xi, 陈磊 Chen Lei, and 王东贺 Wang Donghe. "全固态289.9 nm紫外激光器的研究." Chinese Journal of Lasers 49, no. 7 (2022): 0701001. http://dx.doi.org/10.3788/cjl202249.0701001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Chen Chen, 陈晨, 许强 Xu Qiang, 孙锐 Sun Rui, 张亚妮 Zhang Ya'ni, 康翠萍 Kang Cuiping, 张明霞 Zhang Mingxia, 袁振 Yuan Zhen, and 令维军 Ling Weijun. "调Q锁模运转的全固态Tm:LuAG陶瓷激光器." Infrared and Laser Engineering 50, no. 4 (2021): 20190563. http://dx.doi.org/10.3788/irla20190563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography