To see the other types of publications on this topic, follow the link: Laser spectroscopy.

Journal articles on the topic 'Laser spectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Laser spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Nwaboh, Javis Anyangwe, Thibault Desbois, Daniele Romanini, Detlef Schiel, and Olav Werhahn. "Molecular Laser Spectroscopy as a Tool for Gas Analysis Applications." International Journal of Spectroscopy 2011 (June 20, 2011): 1–12. http://dx.doi.org/10.1155/2011/568913.

Full text
Abstract:
We have used the traceable infrared laser spectrometric amount fraction measurement (TILSAM) method to perform absolute concentration measurements of molecular species using three laser spectroscopic techniques. We report results performed by tunable diode laser absorption spectroscopy (TDLAS), quantum cascade laser absorption spectroscopy (QCLAS), and cavity ring down spectroscopy (CRDS), all based on the TILSAM methodology. The measured results of the different spectroscopic techniques are in agreement with respective gravimetric values, showing that the TILSAM method is feasible with all di
APA, Harvard, Vancouver, ISO, and other styles
2

Tian, Ye, Lintao Wang, Boyang Xue, Qian Chen, and Ying Li. "Laser focusing geometry effects on laser-induced plasma and laser-induced breakdown spectroscopy in bulk water." Journal of Analytical Atomic Spectrometry 34, no. 1 (2019): 118–26. http://dx.doi.org/10.1039/c8ja00282g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

SHIMIZU, TADAO. "Laser spectroscopy." Review of Laser Engineering 21, no. 1 (1993): 137–39. http://dx.doi.org/10.2184/lsj.21.137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ferguson, A. I. "Laser Spectroscopy." Journal of Modern Optics 35, no. 3 (1988): 283–95. http://dx.doi.org/10.1080/09500348814550331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Knight, P. L. "Laser Spectroscopy." Journal of Modern Optics 36, no. 3 (1989): 420. http://dx.doi.org/10.1080/09500348914550511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Knight, P. L. "Laser Spectroscopy." Journal of Modern Optics 40, no. 10 (1993): 2057. http://dx.doi.org/10.1080/09500349314552051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McNab, Iain R., and Ralph C. Shiell. "Laser spectroscopy." Physics Education 29, no. 3 (1994): 164–69. http://dx.doi.org/10.1088/0031-9120/29/3/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Terzic, Mira, Janez Mozina, and Darja Horvat. "Using lasers to measure pollutants." Facta universitatis - series: Physics, Chemistry and Technology 4, no. 1 (2006): 71–81. http://dx.doi.org/10.2298/fupct0601071t.

Full text
Abstract:
In recent years, a large number of linear and nonlinear laser-based diagnostic techniques for detection of pollutions in different environments have been developed. Applications of laser spectroscopy constitute a vast field, which is difficult to cover comprehensively in a review. Due to that here are presented only a few spectroscopic methods, chosen to illustrate the power of applied laser spectroscopy in environmental pollution investigation. The paper also gives a brief presentation of main laser spectroscopy methods.
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Bo, Dayuan Zhang, Jixu Liu, Yifu Tian, Qiang Gao, and Zhongshan Li. "A Review of Femtosecond Laser-Induced Emission Techniques for Combustion and Flow Field Diagnostics." Applied Sciences 9, no. 9 (2019): 1906. http://dx.doi.org/10.3390/app9091906.

Full text
Abstract:
The applications of femtosecond lasers to the diagnostics of combustion and flow field have recently attracted increasing interest. Many novel spectroscopic methods have been developed in obtaining non-intrusive measurements of temperature, velocity, and species concentrations with unprecedented possibilities. In this paper, several applications of femtosecond-laser-based incoherent techniques in the field of combustion diagnostics were reviewed, including two-photon femtosecond laser-induced fluorescence (fs-TPLIF), femtosecond laser-induced breakdown spectroscopy (fs-LIBS), filament-induced
APA, Harvard, Vancouver, ISO, and other styles
10

Ferguson, A. I. "Laser Materials and Laser Spectroscopy." Journal of Modern Optics 37, no. 1 (1990): 148. http://dx.doi.org/10.1080/09500349014550181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Pedrotti, K. D. "Extinction spectroscopy: A novel laser spectroscopic technique." Optics Communications 62, no. 4 (1987): 250–55. http://dx.doi.org/10.1016/0030-4018(87)90167-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

TAKAMI, MICHIO. "Laser molecular spectroscopy." Review of Laser Engineering 21, no. 1 (1993): 204–6. http://dx.doi.org/10.2184/lsj.21.204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

TASUMI, MITSUO. "Laser Raman spectroscopy." Review of Laser Engineering 21, no. 1 (1993): 208–11. http://dx.doi.org/10.2184/lsj.21.208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kliger, David S. "Ultrasensitive laser spectroscopy." Physics Teacher 23, no. 2 (1985): 75–80. http://dx.doi.org/10.1119/1.2341726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Brueck, S. "Laser spectroscopy VII." IEEE Journal of Quantum Electronics 22, no. 5 (1986): 739–40. http://dx.doi.org/10.1109/jqe.1986.1073028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Tam, A. "Laser optoacoustic spectroscopy." IEEE Journal of Quantum Electronics 23, no. 1 (1987): 132. http://dx.doi.org/10.1109/jqe.1987.1073203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Morrow, T. "Laser Spectroscopy VII." Optica Acta: International Journal of Optics 33, no. 5 (1986): 554. http://dx.doi.org/10.1080/713821985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ferguson, A. I. "Laser Optoacoustic Spectroscopy." Optica Acta: International Journal of Optics 33, no. 11 (1986): 1338. http://dx.doi.org/10.1080/716099699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Larsson, J. "VUV laser spectroscopy." Physica Scripta 49, no. 2 (1994): 173–79. http://dx.doi.org/10.1088/0031-8949/49/2/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kobayashi, Masamichi. "Laser raman spectroscopy." Kobunshi 40, no. 5 (1991): 338–41. http://dx.doi.org/10.1295/kobunshi.40.338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bialkowski, Stephen. "Understanding Laser Spectroscopy." Analytical Chemistry 67, no. 17 (1995): 542A. http://dx.doi.org/10.1021/ac00113a723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Hanna, D. C. "Laser spectroscopy VII." Optics & Laser Technology 18, no. 4 (1986): 216. http://dx.doi.org/10.1016/0030-3992(86)90012-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Fairbank, William M. "Analytical laser spectroscopy." Journal of Luminescence 34, no. 6 (1986): 347–48. http://dx.doi.org/10.1016/0022-2313(86)90079-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Yeung, E. S. "Applied laser spectroscopy." TrAC Trends in Analytical Chemistry 13, no. 3 (1994): vii—viii. http://dx.doi.org/10.1016/0165-9936(94)87080-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ledingham, K. W. D. "Ultrasensitive Laser Spectroscopy." Journal of Modern Optics 35, no. 7 (1988): 1114. http://dx.doi.org/10.1080/09500348814551211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Knight, P. L. "Laser Spectroscopy VIII." Journal of Modern Optics 35, no. 10 (1988): 1599. http://dx.doi.org/10.1080/09500348814551721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Knight, Peter. "Laser Spectroscopy IX." Journal of Modern Optics 37, no. 10 (1990): 1687. http://dx.doi.org/10.1080/09500349014551871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

HARRIS, S. E. "LASER DEPLETION SPECTROSCOPY." Optics News 14, no. 12 (1988): 11. http://dx.doi.org/10.1364/on.14.12.000011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Baev, V. M., I. N. Sarkisov, �. A. Sviridenkov, and A. F. Suchkov. "Intracavity laser spectroscopy." Journal of Soviet Laser Research 10, no. 1 (1989): 61–85. http://dx.doi.org/10.1007/bf01120399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ohtsuka, Toshiaki. "Laser Raman Spectroscopy." Zairyo-to-Kankyo 42, no. 9 (1993): 592–600. http://dx.doi.org/10.3323/jcorr1991.42.592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Dyer, P., and J. A. Bounds. "Laser spectroscopy ofTm170." Physical Review C 38, no. 6 (1988): 2813–17. http://dx.doi.org/10.1103/physrevc.38.2813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sigrist, Markus W. "Laser Photoacoustic Spectroscopy." Europhysics News 20, no. 11-12 (1989): 167–70. http://dx.doi.org/10.1051/epn/19892011167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Duxbury, Geoffrey. "Laser Stark spectroscopy." International Reviews in Physical Chemistry 4, no. 3 (1985): 237–78. http://dx.doi.org/10.1080/01442358509353361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Pireaux, J. J. "Laser photoionization spectroscopy." Journal of Molecular Catalysis 52, no. 3 (1989): 397–98. http://dx.doi.org/10.1016/0304-5102(89)85049-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ewart, P. "Laser spectroscopy VII." Spectrochimica Acta Part A: Molecular Spectroscopy 42, no. 10 (1986): 1233. http://dx.doi.org/10.1016/0584-8539(86)80082-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Beattie, ProfessorI. "Laser Raman spectroscopy." Spectrochimica Acta Part A: Molecular Spectroscopy 44, no. 10 (1988): 1063. http://dx.doi.org/10.1016/0584-8539(88)80229-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Dongjia Han, Dongjia Han, Yanyan Li Yanyan Li, Juan Du Juan Du, et al. "Ultrafast laser system based on noncollinear optical parametric amplification for laser spectroscopy." Chinese Optics Letters 13, no. 12 (2015): 121401–4. http://dx.doi.org/10.3788/col201513.121401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Hussain, Ali A.-K. "Spectroscopic analysis of magnesium-aluminum alloys by laser induced breakdown spectroscopy." Iraqi Journal of Physics (IJP) 16, no. 36 (2018): 113–22. http://dx.doi.org/10.30723/ijp.v16i36.36.

Full text
Abstract:
In this work, the spectra of plasma glow produced by Nd:YAG laser operated at 1.064 μm on Al-Mg alloys with same molar ratio samples in air were analyzed by comparing the atomic lines of aluminum and magnesium with that of strong standard lines. The effect of laser energies on spectral lines, produced by laser ablation, were investigated using optical spectroscopy, the electron density was measured utilizing the Stark broadening of magnesium-aluminum lines and the electron temperature was calculated from the standard Boltzmann plot method. The results that show the electron temperature increas
APA, Harvard, Vancouver, ISO, and other styles
39

Chao Shen, Chao Shen, Yujun Zhang Yujun Zhang, and Jiazheng Ni Jiazheng Ni. "Compact cylindrical multipass cell for laser absorption spectroscopy." Chinese Optics Letters 11, no. 9 (2013): 091201–91205. http://dx.doi.org/10.3788/col201311.091201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Sumpf, Bernd, Dimitrii Göring, Rainer Haseloff, Karin Herrmann, and Jens Wolfgang Tomm. "Detection of carbon monoxide, carbon dioxide and sulfur dioxide with pulsed tunable PbS1-xSex-diode lasers." Collection of Czechoslovak Chemical Communications 54, no. 2 (1989): 284–96. http://dx.doi.org/10.1135/cccc19890284.

Full text
Abstract:
The purpose of this paper is to report our results on the detection and spectroscopic parameters of carbon monoxide, carbon dioxide and sulfur dioxide using high resolution linear diode laser spectroscopy with pulsed tunable PbS1-xSex homolasers. The parameters of pulsed diode lasers used in spectroscopy for various gases are discussed. The application of the diode laser spectrometer for CO gas detection at ppm level illustrates the sensitivity of the equipment.
APA, Harvard, Vancouver, ISO, and other styles
41

ITOH, Tadashi. "Fundamentals of Laser Spectroscopy. II. Luminescence Spectroscopy." Review of Laser Engineering 28, no. 1 (2000): 54–59. http://dx.doi.org/10.2184/lsj.28.54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hergenröder, R., and K. Niemax. "Laser atomic absorption spectroscopy applying semiconductor diode lasers." Spectrochimica Acta Part B: Atomic Spectroscopy 43, no. 12 (1988): 1443–49. http://dx.doi.org/10.1016/0584-8547(88)80183-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Weng, Kanxing, Bin Wu, Feichen Wang, et al. "The Influence of Temperature on Frequency Modulation Spectroscopy in Atom Gravimeter." Sensors 22, no. 24 (2022): 9935. http://dx.doi.org/10.3390/s22249935.

Full text
Abstract:
Atom gravimeters use locked lasers to manipulate atoms to achieve high-precision gravity measurements. Frequency modulation spectroscopy (FMS) is an accurate method of optical heterodyne spectroscopy, capable of the sensitive and rapid frequency locking of the laser. Because of the effective absorption coefficient, Doppler broadening and susceptibility depend on temperature, and the signal-to-noise ratio (SNR) of the spectroscopy could be affected by temperature. We present a detailed study of the influence of the temperature on FMS in atom gravimeters, and the experimental results show that t
APA, Harvard, Vancouver, ISO, and other styles
44

Melessanaki, K., C. Stringari, C. Fotakis, and D. Anglos. "Laser Cleaning and Spectroscopy: A Synergistic Approach in the Conservation of a Modern Painting." Laser Chemistry 2006 (December 25, 2006): 1–5. http://dx.doi.org/10.1155/2006/42709.

Full text
Abstract:
We present results from preliminary laser cleaning studies performed on a 20th century modern painting, in which laser-induced breakdown spectroscopy (LIBS) was employed for monitoring the progress of material removal. This synergistic approach, that combines laser ablation cleaning with spectroscopic control, is of obvious importance as it offers a reliable means of ensuring proper conservation and could be the basis of a standard protocol for laser-based restoration procedures.
APA, Harvard, Vancouver, ISO, and other styles
45

Anglos, Demetrios, Savas Georgiou, and Costas Fotakis. "Lasers in the Analysis of Cultural Heritage Materials." Journal of Nano Research 8 (September 2009): 47–60. http://dx.doi.org/10.4028/www.scientific.net/jnanor.8.47.

Full text
Abstract:
This article reviews laser-based analytical techniques, which find applications in the field of cultural heritage diagnostics, providing information about the chemical composition of materials, at the atomic or molecular level. Lasers are intense sources of light featuring unique characteristics that have been exploited in order to enhance the performance of certain spectroscopic techniques such as Raman or fluorescence spectroscopy, or even produce new schemes of analysis, including, for instance, non-linear or remote sensing spectroscopy as well as laser ablative sampling and excitation. In
APA, Harvard, Vancouver, ISO, and other styles
46

Frolov, M. P., and Yu P. Podmar'kov. "Intracavity laser spectroscopy with a Co:MgF2 laser." Optics Communications 155, no. 4-6 (1998): 313–16. http://dx.doi.org/10.1016/s0030-4018(98)00410-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Savard, G., J. E. Crawford, J. K. P. Lee, et al. "Laser spectroscopy of laser-desorbed gold isotopes." Nuclear Physics A 512, no. 2 (1990): 241–52. http://dx.doi.org/10.1016/0375-9474(90)93192-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

LEWIS, B. R., S. T. GIBSON, K. G. H. BALDWIN, P. M. DOOLEY, and K. WARING. "COMPARATIVE VERY-HIGH-RESOLUTION VUV SPECTROSCOPY: LASER SPECTROSCOPY OF O2." Surface Review and Letters 09, no. 01 (2002): 31–38. http://dx.doi.org/10.1142/s0218625x02001690.

Full text
Abstract:
Despite their importance to the photochemistry of the terrestrial atmosphere, and many experimental studies, previous characterization of the Schumann–Runge (SR) bands of O 2, [Formula: see text] (1750–2050 Å) has been limited by poor experimental resolution. In addition, our understanding of the SR spectrum is incomplete, many rovibrational transitions in the perturbed region of the spectrum [B(v > 15)] remaining unassigned. We review new very-high-resolution measurements of the O 2 photoabsorption cross section in the SR bands. Tunable, narrow-bandwidth background vacuum-ultraviolet (VUV)
APA, Harvard, Vancouver, ISO, and other styles
49

KAKEHATA, Masayuki, Hideo HIROSE, Masanobu YAMANAKA, et al. "CLEO/QELS '92 REPORT III. Gas Lasers, X-ray Lasers, Laser Fusion, Laser Spectroscopy." Review of Laser Engineering 20, no. 7 (1992): 572–87. http://dx.doi.org/10.2184/lsj.20.7_572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Konidala, Sathish Kumar, Govindarao Kamala, and Sravani Koralla. "Laser Induced Breakdown Spectroscopy." Research Journal of Pharmacy and Technology 9, no. 1 (2016): 91. http://dx.doi.org/10.5958/0974-360x.2016.00015.9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!