To see the other types of publications on this topic, follow the link: Lasers à Cascade Interbande.

Journal articles on the topic 'Lasers à Cascade Interbande'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Lasers à Cascade Interbande.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Meyer, Jerry, William Bewley, Chadwick Canedy, et al. "The Interband Cascade Laser." Photonics 7, no. 3 (2020): 75. http://dx.doi.org/10.3390/photonics7030075.

Full text
Abstract:
We review the history, development, design principles, experimental operating characteristics, and specialized architectures of interband cascade lasers for the mid-wave infrared spectral region. We discuss the present understanding of the mechanisms limiting the ICL performance and provide a perspective on the potential for future improvements. Such device properties as the threshold current and power densities, continuous-wave output power, and wall-plug efficiency are compared with those of the quantum cascade laser. Newer device classes such as ICL frequency combs, interband cascade vertic
APA, Harvard, Vancouver, ISO, and other styles
2

Ning, Chao, Tian Yu, Shuman Liu, et al. "Interband cascade lasers with short electron injector." Chinese Optics Letters 20, no. 2 (2022): 022501. http://dx.doi.org/10.3788/col202220.022501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Horiuchi, Noriaki. "Interband cascade lasers." Nature Photonics 9, no. 8 (2015): 481. http://dx.doi.org/10.1038/nphoton.2015.147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vurgaftman, I., R. Weih, M. Kamp, et al. "Interband cascade lasers." Journal of Physics D: Applied Physics 48, no. 12 (2015): 123001. http://dx.doi.org/10.1088/0022-3727/48/12/123001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ryczko, Krzysztof, and Grzegorz Sęk. "Towards unstrained interband cascade lasers." Applied Physics Express 11, no. 1 (2017): 012703. http://dx.doi.org/10.7567/apex.11.012703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Massengale, J. A., Yixuan Shen, Rui Q. Yang, S. D. Hawkins, and J. F. Klem. "Long wavelength interband cascade lasers." Applied Physics Letters 120, no. 9 (2022): 091105. http://dx.doi.org/10.1063/5.0084565.

Full text
Abstract:
InAs-based interband cascade lasers (ICLs) can be more easily adapted toward long wavelength operation than their GaSb counterparts. Devices made from two recent ICL wafers with an advanced waveguide structure are reported, which demonstrate improved device performance in terms of reduced threshold current densities for ICLs near 11 μm or extended operating wavelength beyond 13 μm. The ICLs near 11 μm yielded a significantly reduced continuous wave (cw) lasing threshold of 23 A/cm2 at 80 K with substantially increased cw output power, compared with previously reported ICLs at similar wavelengt
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Rui Q., Lu Li, Wenxiang Huang, et al. "InAs-Based Interband Cascade Lasers." IEEE Journal of Selected Topics in Quantum Electronics 25, no. 6 (2019): 1–8. http://dx.doi.org/10.1109/jstqe.2019.2916923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kim, M., C. L. Canedy, C. S. Kim, et al. "Room temperature interband cascade lasers." Physics Procedia 3, no. 2 (2010): 1195–200. http://dx.doi.org/10.1016/j.phpro.2010.01.162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yu, Tian, Chao Ning, Ruixuan Sun, et al. "Strain mapping in interband cascade lasers." AIP Advances 12, no. 1 (2022): 015027. http://dx.doi.org/10.1063/5.0079193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Holzbauer, Martin, Rolf Szedlak, Hermann Detz, et al. "Substrate-emitting ring interband cascade lasers." Applied Physics Letters 111, no. 17 (2017): 171101. http://dx.doi.org/10.1063/1.4989514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Trofimov, I. E., C. L. Canedy, C. S. Kim, et al. "Interband cascade lasers with long lifetimes." Applied Optics 54, no. 32 (2015): 9441. http://dx.doi.org/10.1364/ao.54.009441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bradshaw, J. L., J. D. Bruno, J. T. Pham, D. E. Wortman, and Rui Q. Yang. "Midinfrared type-II interband cascade lasers." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 18, no. 3 (2000): 1628. http://dx.doi.org/10.1116/1.591441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Yang, Rui Q., J. D. Bruno, J. L. Bradshaw, J. T. Pham, and D. E. Wortman. "Interband cascade lasers: progress and challenges." Physica E: Low-dimensional Systems and Nanostructures 7, no. 1-2 (2000): 69–75. http://dx.doi.org/10.1016/s1386-9477(99)00280-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Jiang, Yuchao, Lu Li, Zhaobing Tian, et al. "Electrically widely tunable interband cascade lasers." Journal of Applied Physics 115, no. 11 (2014): 113101. http://dx.doi.org/10.1063/1.4865941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ryczko, Krzysztof, Janusz Andrzejewski, and Grzegorz Sęk. "Towards Interband Cascade lasers on InP Substrate." Materials 15, no. 1 (2021): 60. http://dx.doi.org/10.3390/ma15010060.

Full text
Abstract:
In this study, we propose designs of an interband cascade laser (ICL) active region able to emit in the application-relevant mid infrared (MIR) spectral range and to be grown on an InP substrate. This is a long-sought solution as it promises a combination of ICL advantages with mature and cost-effective epitaxial technology of fabricating materials and devices with high structural and optical quality, when compared to standard approaches of growing ICLs on GaSb or InAs substrates. Therefore, we theoretically investigate a family of type II, “W”-shaped quantum wells made of InGaAs/InAs/GaAsSb w
APA, Harvard, Vancouver, ISO, and other styles
16

Meyer, Jerry R., Chul Soo Kim, Mijin Kim, et al. "Interband Cascade Photonic Integrated Circuits on Native III-V Chip." Sensors 21, no. 2 (2021): 599. http://dx.doi.org/10.3390/s21020599.

Full text
Abstract:
We describe how a midwave infrared photonic integrated circuit (PIC) that combines lasers, detectors, passive waveguides, and other optical elements may be constructed on the native GaSb substrate of an interband cascade laser (ICL) structure. The active and passive building blocks may be used, for example, to fabricate an on-chip chemical detection system with a passive sensing waveguide that evanescently couples to an ambient sample gas. A variety of highly compact architectures are described, some of which incorporate both the sensing waveguide and detector into a laser cavity defined by tw
APA, Harvard, Vancouver, ISO, and other styles
17

Zhang Yi, 张一, 杨成奥 Yang Cheng''ao, 尚金铭 Shang Jinming, et al. "Research Progress of Semiconductor Interband Cascade Lasers." Acta Optica Sinica 41, no. 1 (2021): 0114004. http://dx.doi.org/10.3788/aos202141.0114004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Chen Junjing, 陈君景, 王一丁 Wang Yiding, and 曹峰 Cao Feng. "Mid-Infrared Type-II Interband Cascade Lasers." Laser & Optoelectronics Progress 45, no. 3 (2008): 19–24. http://dx.doi.org/10.3788/lop20084503.0019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Soibel, A., M. W. Wright, W. Farr, et al. "High-speed operation of interband cascade lasers." Electronics Letters 45, no. 5 (2009): 264. http://dx.doi.org/10.1049/el:20090079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Vurgaftman, Igor, William W. Bewley, Chadwick L. Canedy, et al. "Mid-IR Type-II Interband Cascade Lasers." IEEE Journal of Selected Topics in Quantum Electronics 17, no. 5 (2011): 1435–44. http://dx.doi.org/10.1109/jstqe.2011.2114331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Yang, R. Q., J. L. Bradshaw, J. D. Bruno, J. T. Pham, and D. E. Wortman. "Mid-infrared type-II interband cascade lasers." IEEE Journal of Quantum Electronics 38, no. 6 (2002): 559–68. http://dx.doi.org/10.1109/jqe.2002.1005406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Yang, R. Q., C.-H. Lin, B. H. Yang, et al. "High Power Mid-IR Interband Cascade Lasers." Optics and Photonics News 8, no. 12 (1997): 26. http://dx.doi.org/10.1364/opn.8.12.000026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Li, Lu, Lihua Zhao, Yuchao Jiang, et al. "Single-waveguide dual-wavelength interband cascade lasers." Applied Physics Letters 101, no. 17 (2012): 171118. http://dx.doi.org/10.1063/1.4764910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Dallner, Matthias, Julian Scheuermann, Lars Nähle, et al. "InAs-based distributed feedback interband cascade lasers." Applied Physics Letters 107, no. 18 (2015): 181105. http://dx.doi.org/10.1063/1.4935076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Deng, Yu, Bin-Bin Zhao, Xing-Guang Wang, and Cheng Wang. "Narrow linewidth characteristics of interband cascade lasers." Applied Physics Letters 116, no. 20 (2020): 201101. http://dx.doi.org/10.1063/5.0006823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ryczko, Krzysztof, Agata Zielińska, and Grzegorz Sęk. "Interband Cascade Active Region with Ultra-Broad Gain in the Mid-Infrared Range." Materials 14, no. 5 (2021): 1112. http://dx.doi.org/10.3390/ma14051112.

Full text
Abstract:
The optical gain spectrum has been investigated theoretically for various designs of active region based on InAs/GaInSb quantum wells—i.e., a type II material system employable in interband cascade lasers (ICLs) or optical amplifiers operating in the mid-infrared spectral range. The electronic properties and optical responses have been calculated using the eight-band k·p theory, including strain and external electric fields, to simulate the realistic conditions occurring in operational devices. The results show that intentionally introducing a slight nonuniformity between two subsequent stages
APA, Harvard, Vancouver, ISO, and other styles
27

Fordyce, J. A. M., D. A. Diaz-Thomas, L. O'Faolain, A. N. Baranov, T. Piwonski, and L. Cerutti. "Single-mode interband cascade laser with a slotted waveguide." Applied Physics Letters 121, no. 21 (2022): 211102. http://dx.doi.org/10.1063/5.0120460.

Full text
Abstract:
The design of a single-mode interband cascade laser (ICL) using a slotted waveguide is presented. This technique was explored as an inexpensive alternative to distributed feedback lasers since standard photolithography can be used in fabrication and complex techniques, such as e-beam lithography, re-growth steps, and/or metal gratings, can be avoided. The design of slotted waveguides must be carefully simulated before fabrication to ensure the efficacy of the photolithography masks with each ICL growth. Limitations and the behavior of key design parameters are discussed. Single-mode emission w
APA, Harvard, Vancouver, ISO, and other styles
28

NING Chao, 宁超, 孙瑞轩 SUN Ruixuan, 于天 YU Tian та ін. "带间级联激光器电子注入区优化研究(特邀)". ACTA PHOTONICA SINICA 51, № 2 (2022): 0251208. http://dx.doi.org/10.3788/gzxb20225102.0251208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Biryukov, A. A., B. N. Zvonkov, S. M. Nekorkin, et al. "Study of interband cascade lasers with tunneling transition." Bulletin of the Russian Academy of Sciences: Physics 71, no. 1 (2007): 96–99. http://dx.doi.org/10.3103/s1062873807010248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Weih, Robert, Adam Bauer, Martin Kamp, and Sven Höfling. "Interband cascade lasers with AlGaAsSb bulk cladding layers." Optical Materials Express 3, no. 10 (2013): 1624. http://dx.doi.org/10.1364/ome.3.001624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Meyer, J. R., I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan. "Type-II and type-I interband cascade lasers." Electronics Letters 32, no. 1 (1996): 45. http://dx.doi.org/10.1049/el:19960064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lin, Yuzhe, Lu Li, Wenxiang Huang, Rui Q. Yang, James A. Gupta, and Wanhua Zheng. "Quasi-Fermi Level Pinning in Interband Cascade Lasers." IEEE Journal of Quantum Electronics 56, no. 4 (2020): 1–10. http://dx.doi.org/10.1109/jqe.2020.3003081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Myers, Tanya L., Bret D. Cannon, Carolyn S. Brauer, et al. "Gamma irradiation of Fabry–Perot interband cascade lasers." Optical Engineering 57, no. 01 (2017): 1. http://dx.doi.org/10.1117/1.oe.57.1.011016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Jiang, Yuchao, Lu Li, Rui Q. Yang та ін. "Type-I interband cascade lasers near 3.2 μm". Applied Physics Letters 106, № 4 (2015): 041117. http://dx.doi.org/10.1063/1.4907326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Borri, Simone, Mario Siciliani de Cumis, Silvia Viciani, Francesco D’Amato, and Paolo De Natale. "Unveiling quantum-limited operation of interband cascade lasers." APL Photonics 5, no. 3 (2020): 036101. http://dx.doi.org/10.1063/1.5139483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Canedy, C. L., W. W. Bewley, C. S. Kim, et al. "cw midinfrared “W” diode and interband cascade lasers." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 24, no. 3 (2006): 1613. http://dx.doi.org/10.1116/1.2192533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Nähle, L., P. Fuchs, M. Fischer, et al. "Mid infrared interband cascade lasers for sensing applications." Applied Physics B 100, no. 2 (2010): 275–78. http://dx.doi.org/10.1007/s00340-010-3899-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Zhao, Xuyi, Chunfang Cao, Antian Du, et al. "High Performance Interband Cascade Lasers With AlGaAsSb Cladding Layers." IEEE Photonics Technology Letters 34, no. 5 (2022): 291–94. http://dx.doi.org/10.1109/lpt.2022.3153334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zhaobing Tian, R. Q. Yang, T. D. Mishima, M. B. Santos, and M. B. Johnson. "Plasmon-Waveguide Interband Cascade Lasers Near 7.5 $\mu$m." IEEE Photonics Technology Letters 21, no. 21 (2009): 1588–90. http://dx.doi.org/10.1109/lpt.2009.2030686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Bradshaw, J. L., J. D. Bruno, D. E. Wortman, R. Q. Yang, and J. T. Pham. "Continuous wave operation of type-II interband cascade lasers." IEE Proceedings - Optoelectronics 147, no. 3 (2000): 177–80. http://dx.doi.org/10.1049/ip-opt:20000299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Sterczewski, Lukasz A., Jonas Westberg, Mahmood Bagheri, et al. "Mid-infrared dual-comb spectroscopy with interband cascade lasers." Optics Letters 44, no. 8 (2019): 2113. http://dx.doi.org/10.1364/ol.44.002113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Mansour, K., Y. Qiu, C. J. Hill, A. Soibel, and R. Q. Yang. "Mid-infrared interband cascade lasers at thermoelectric cooler temperatures." Electronics Letters 42, no. 18 (2006): 1034. http://dx.doi.org/10.1049/el:20062442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Du Zhenhui, 杜振辉, 韩瑞炎 Han Ruiyan, 王晓雨 Wang Xiaoyu, 王拴棵 Wang Shuangke, 孟硕 Mengshuo, and 李金义 Li Jinyi. "Interband Cascade Lasers Based Trace Gas Sensing: A Review." Chinese Journal of Lasers 45, no. 9 (2018): 0911006. http://dx.doi.org/10.3788/cjl201845.0911006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Scheuermann, Julian, Robert Weih, Michael von Edlinger та ін. "Single-mode interband cascade lasers emitting below 2.8 μm". Applied Physics Letters 106, № 16 (2015): 161103. http://dx.doi.org/10.1063/1.4918985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Jiang, Yuchao, Lu Li, Hao Ye, et al. "InAs-Based Single-Mode Distributed Feedback Interband Cascade Lasers." IEEE Journal of Quantum Electronics 51, no. 9 (2015): 1–7. http://dx.doi.org/10.1109/jqe.2015.2470534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zuowei Yin, Yuchao Jiang, Zhaobing Tian, et al. "Far-Field Patterns of Plasmon Waveguide Interband Cascade Lasers." IEEE Journal of Quantum Electronics 47, no. 11 (2011): 1414–19. http://dx.doi.org/10.1109/jqe.2011.2168812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ryczko, K., and G. Sęk. "Polarization-independent gain in mid-infrared interband cascade lasers." AIP Advances 6, no. 11 (2016): 115020. http://dx.doi.org/10.1063/1.4968190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Meyer, Jerry. "Special Section Guest Editorial: Quantum and Interband Cascade Lasers." Optical Engineering 49, no. 11 (2010): 111101. http://dx.doi.org/10.1117/1.3512992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hill, Cory J., Baohua Yang, and Rui Q. Yang. "Low-threshold interband cascade lasers operating above room temperature." Physica E: Low-dimensional Systems and Nanostructures 20, no. 3-4 (2004): 486–90. http://dx.doi.org/10.1016/j.physe.2003.08.064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Canedy, C. L., C. S. Kim, M. Kim, et al. "High-power, narrow-ridge, mid-infrared interband cascade lasers." Journal of Crystal Growth 301-302 (April 2007): 931–34. http://dx.doi.org/10.1016/j.jcrysgro.2006.11.127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!