Dissertations / Theses on the topic 'Latin squares'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Latin squares.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Rhodes, Susan Jane. "Latin squares with restrictions." Thesis, Lancaster University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385954.
Full textGhebremicael, Aman W. "Latin squares and applications /." Available to subscribers only, 2009. http://proquest.umi.com/pqdweb?did=1791777361&sid=1&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Full textGhebremicael, Aman. "Latin Squares and Applications." OpenSIUC, 2008. https://opensiuc.lib.siu.edu/dissertations/266.
Full textJames, Fiedler. "Greco-Latin squares as bijections." [Ames, Iowa : Iowa State University], 2007.
Find full textWhitaker, Roger Marcus. "Mutually quasi-orthogonal Latin squares." Thesis, Keele University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311129.
Full textIsaksson, Edward. "Latin Squares and Tactical Configurations." Thesis, Uppsala universitet, Algebra och geometri, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447463.
Full textDaqqa, Ibtisam. "Subconstituent algebras of Latin squares." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002395.
Full textDaqqa, Ibtisam. "Subconstituent Algebras of Latin Squares." Scholar Commons, 2007. https://scholarcommons.usf.edu/etd/199.
Full textCasselgren, Carl Johan, and Roland Häggkvist. "Completing partial Latin squares with one filled row, column and symbol." Linköpings universitet, Matematik och tillämpad matematik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-92689.
Full textAndrén, Lina J. "On Latin squares and avoidable arrays." Doctoral thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-36040.
Full textHigham, Jeffrey T. "Construction methods for row-complete Latin squares." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21356.pdf.
Full textGunawardana, Beruwalage Lakshika Kumari. "A VARIATION ON MUTUALLY ORTHOGONAL LATIN SQUARES." OpenSIUC, 2016. https://opensiuc.lib.siu.edu/theses/1989.
Full textChigbu, Polycarp Emeka. "Semi-Latin squares : methods for enumeration and comparison." Thesis, Goldsmiths College (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363083.
Full textHenderson, Matthew James. "Embedding Symmetric Latin Squares and Edge-Coloured graphs." Thesis, University of Reading, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.485356.
Full textMourtos, Ioannis. "Integer and Constraint programming methods for mutually Orthogonal Latin Squares." Thesis, London School of Economics and Political Science (University of London), 2003. http://etheses.lse.ac.uk/2515/.
Full textOlsson, Christoffer. "Discreet Discrete Mathematics : Secret Communication Using Latin Squares and Quasigroups." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-136860.
Full textBurgess, D. R. B. "Uniquely completable and critical sets for graph colourings and Latin squares." Thesis, University of Surrey, 1998. http://epubs.surrey.ac.uk/842906/.
Full textCarter, James Michael. "Mutually orthogonal latin squares based on ℤ3× ℤ9". Wright State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=wright1186687248.
Full textBaker, Charla Lindner Charles C. "The intersection problem for Latin squares with holes of size 2 and 3." Auburn, Ala, 2009. http://hdl.handle.net/10415/1670.
Full textGöransson, Herman. "Completing partial latin squares with 2 filled rows and 3 filled columns." Thesis, Linköpings universitet, Matematiska institutionen, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-163092.
Full textBenade, Johannes Gerhardus. "A distributed system for enumerating main classes of sets of orthogonal Latin squares." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/96087.
Full textFarias, Fausto Gustavo. "Quadrados latinos e quadrados mágicos - uma proposta didática." Universidade Federal da Paraíba, 2017. http://tede.biblioteca.ufpb.br:8080/handle/tede/9463.
Full textBobga, Benkam Benedict Johnson Peter D. "Some necessary conditions for list colorability of graphs and a conjecture on completing partial Latin squares." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/FALL/Mathematics_and_Statistics/Dissertation/Bobga_Benkam_22.pdf.
Full textKidd, Martin Philip. "On the existence and enumeration of sets of two or three mutually orthogonal Latin squares with application to sports tournament scheduling." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20038.
Full textBedford, David. "Finite left neofields and their use as a unifying principle in constructions for orthogonal Latin squares." Thesis, University of Surrey, 1991. http://epubs.surrey.ac.uk/843470/.
Full textÖhman, Lars-Daniel. "How to do what you want to do when you can not do what you want : on avoiding and completing partial latin squares." Doctoral thesis, Umeå University, Mathematics and Mathematical Statistics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-867.
Full textMariot, Luca. "Automates cellulaires, fonctions booléennes et dessins combinatoires." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4011/document.
Full textÖhman, Lars-Daniel. "How to do what you want to do when you can not do what you want : on avoiding and completing partial latin squares /." Umeå : Department of Mathematics and Mathematical Statistics, Umeå University, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-867.
Full textSanches, Paula da Fonte. "Quadrados latinos balanceados para a vizinhança - planejamento e análise de dados sensoriais por meio da ADQ." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-25022010-090439/.
Full textGunturkun, Mustafa Hakan. "Using Tropical Degenerations For Proving The Nonexistence Of Certain Nets." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612076/index.pdf.
Full textGongora-Aldaz, José Antonio. "On the addition of further treatments to Latin Square designs." Thesis, University of Warwick, 1997. http://wrap.warwick.ac.uk/73127/.
Full textSantos, Ricardo Pessoa dos. "A matemática por trás do sudoku, um estudo de caso em análise combinatória." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/152320.
Full textFlores, Nichole Marie. "Guadalupe in the Public Square: Religious Aesthetics and the Pursuit of Justice." Thesis, Boston College, 2015. http://hdl.handle.net/2345/bc-ir:104548.
Full textWalker, DayVon L. "Power Graphs of Quasigroups." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7984.
Full textSteen, Ian Nicholas. "Application of a Latin square experimental design in health services research : estimation of the effects of setting clinical standards and performance review on the process and outcome of care in general practice." Thesis, University of Newcastle Upon Tyne, 1998. http://hdl.handle.net/10443/627.
Full textCasselgren, Carl Johan. "On some graph coloring problems." Doctoral thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-43389.
Full textAli, Mohamad Jaafar. "Wireless body area networks : co-channel interference mitigation & avoidance." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCB252/document.
Full textAli, Mohamad Jaafar. "Wireless body area networks : co-channel interference mitigation & avoidance." Electronic Thesis or Diss., Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCB252.
Full textLebon, Jérémy. "Towards multifidelity uncertainty quantification for multiobjective structural design." Phd thesis, Université de Technologie de Compiègne, 2013. http://tel.archives-ouvertes.fr/tel-01002392.
Full textChan, Cheng-I., and 陳靜儀. "Transversals in Latin Squares." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/6ey4af.
Full textLiu, Shu-Hui, and 劉曙輝. "New algorithms for N Latin squares." Thesis, 1988. http://ndltd.ncl.edu.tw/handle/13742039993171870432.
Full textGUO, SAN-HUI, and 郭三輝. "The intersections of commutative Latin squares." Thesis, 1989. http://ndltd.ncl.edu.tw/handle/86808743995258455663.
Full textLi, Jung Feng, and 李榮蘴. "Critical sets of special latin squares." Thesis, 1998. http://ndltd.ncl.edu.tw/handle/46269856670257644780.
Full textYU, JYUN-REN, and 俞竣仁. "Decoder Implementation of Latin Squares LDPC Codes." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/89454749112570694794.
Full textShen, Yuh-Ying, and 沈煜瑩. "r-orthogonal latin squares of order n." Thesis, 1995. http://ndltd.ncl.edu.tw/handle/94983196600878076175.
Full textBartlett, Padraic James. "Completions of ε-Dense Partial Latin Squares". Thesis, 2013. https://thesis.library.caltech.edu/7819/1/caltech_dissertation_padraic_draft.pdf.
Full textTsai, Shu-Hui, and 蔡淑慧. "Orthogonality of Latin squares defined by abelian groups." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/9e9b5v.
Full textHowell, Jared. "Intersection problem and different pairs problem for Latin squares." Thesis, 2010. http://hdl.handle.net/1828/3095.
Full textChen, Hsin-yu, and 陳欣妤. "High Effciency Decoder Implementation of Latin Squares LDPC Codes." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/60138536563924570522.
Full textvan, Bommel Christopher Martin. "An Asymptotic Existence Theory on Incomplete Mutually Orthogonal Latin Squares." Thesis, 2015. http://hdl.handle.net/1828/5930.
Full text