Journal articles on the topic 'Latin squares'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Latin squares.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
M., I. Garcia-Planas, and Roca-Borrego D. "Cyclic-union Operation to Obtain Latin Squares." British Journal of Mathematics & Computer Science 22, no. 5 (2017): 1–8. https://doi.org/10.9734/BJMCS/2017/33945.
Full textBagchi, Bhaskar. "Latin squares." Resonance 17, no. 9 (2012): 895–902. http://dx.doi.org/10.1007/s12045-012-0098-4.
Full textFearn, Tom. "Latin Squares." NIR news 17, no. 1 (2006): 15. http://dx.doi.org/10.1255/nirn.875.
Full textYu, Glebsky L., and Carlos J. Rubio. "Latin Squares, Partial Latin Squares and Their Generalized Quotients." Graphs and Combinatorics 21, no. 3 (2005): 365–75. http://dx.doi.org/10.1007/s00373-005-0614-3.
Full textEmanouilidis, Emanuel. "Latin and cross Latin squares." International Journal of Mathematical Education in Science and Technology 39, no. 5 (2008): 697–700. http://dx.doi.org/10.1080/00207390801935921.
Full textBailey, R. A. "Semi-Latin squares." Journal of Statistical Planning and Inference 18, no. 3 (1988): 299–312. http://dx.doi.org/10.1016/0378-3758(88)90107-3.
Full textCavenagh, Nicholas, Carlo Hämäläinen, James G. Lefevre, and Douglas S. Stones. "Multi-latin squares." Discrete Mathematics 311, no. 13 (2011): 1164–71. http://dx.doi.org/10.1016/j.disc.2010.06.026.
Full textDanziger, Peter, Ian M. Wanless, and Bridget S. Webb. "Monogamous latin squares." Journal of Combinatorial Theory, Series A 118, no. 3 (2011): 796–807. http://dx.doi.org/10.1016/j.jcta.2010.11.011.
Full textHeinrich, Katherine, Kichul Kim, and V. K. Prasanna Kumar. "Perfect latin squares." Discrete Applied Mathematics 37-38 (July 1992): 281–86. http://dx.doi.org/10.1016/0166-218x(92)90139-2.
Full textJenkins, Peter. "Embedding a latin square in a pair of orthogonal latin squares." Journal of Combinatorial Designs 14, no. 4 (2006): 270–76. http://dx.doi.org/10.1002/jcd.20087.
Full textKatrnoška, František. "On algebras of generalized Latin squares." Mathematica Bohemica 136, no. 1 (2011): 91–103. http://dx.doi.org/10.21136/mb.2011.141453.
Full textFalcón, Raúl M., Víctor Álvarez, José Andrés Armario, María Dolores Frau, Félix Gudiel, and María Belén Güemes. "A computational approach to analyze the Hadamard quasigroup product." Electronic Research Archive 31, no. 6 (2023): 3245–63. http://dx.doi.org/10.3934/era.2023164.
Full textEDMONDSON, R. N. "Trojan square and incomplete Trojan square designs for crop research." Journal of Agricultural Science 131, no. 2 (1998): 135–42. http://dx.doi.org/10.1017/s002185969800567x.
Full textKuhl, Jaromy Scott, and Tristan Denley. "On avoiding odd partial Latin squares and r-multi Latin squares." Discrete Mathematics 306, no. 22 (2006): 2968–75. http://dx.doi.org/10.1016/j.disc.2006.05.028.
Full textMahfooz, S. Z., and Y. Khan. "Characteristics of Dispersed Latin Squares." Nucleus 56, no. 4 (2020): 131–36. https://doi.org/10.71330/thenucleus.2019.585.
Full textHan, Michael, Ella Kim, Evin Liang, et al. "Fun with Latin Squares." Recreational Mathematics Magazine 10, no. 17 (2023): 51–74. http://dx.doi.org/10.2478/rmm-2023-0003.
Full textAbbas, Fazal, Mubasher Umer, Umar Hayat, and Ikram Ullah. "Trivial and Nontrivial Eigenvectors for Latin Squares in Max-Plus Algebra." Symmetry 14, no. 6 (2022): 1101. http://dx.doi.org/10.3390/sym14061101.
Full textFU, CHIN-MEI. "A NOTE ON THE CONSTRUCTION OF LARGE SET OF LATIN SQUARES WITH ONE ENTRY IN COMMON." Tamkang Journal of Mathematics 24, no. 2 (1993): 215–20. http://dx.doi.org/10.5556/j.tkjm.24.1993.4492.
Full textKim, Beob G., and Hans H. Stein. "A spreadsheet program for making a balanced Latin Square design." Revista Colombiana de Ciencias Pecuarias 22, no. 4 (2009): 6. http://dx.doi.org/10.17533/udea.rccp.324493.
Full textBehforooz, Hossein. "91.49 Mirror magic squares from Latin Squares." Mathematical Gazette 91, no. 521 (2007): 316–21. http://dx.doi.org/10.1017/s0025557200181793.
Full textFaruqi, Shahab, S. A. Katre, and Manisha Garg. "Pseudo orthogonal Latin squares." Discrete Mathematics and Applications 31, no. 1 (2021): 5–17. http://dx.doi.org/10.1515/dma-2021-0002.
Full textGalatenko, A. V., V. A. Nosov, and A. E. Pankratiev. "Latin Squares over Quasigroups." Lobachevskii Journal of Mathematics 41, no. 2 (2020): 194–203. http://dx.doi.org/10.1134/s1995080220020079.
Full textEmanouilidis, Emanuel. "Latin and magic squares." International Journal of Mathematical Education in Science and Technology 36, no. 5 (2005): 546–49. http://dx.doi.org/10.1080/00207390412331336201.
Full textPittenger, Arthur O. "Mappings of latin squares." Linear Algebra and its Applications 261, no. 1-3 (1997): 251–68. http://dx.doi.org/10.1016/s0024-3795(96)00408-9.
Full textHilton, A. J. W., M. Mays, C. A. Rodger, and C. St J. A. Nash-Williams. "Hamiltonian double latin squares." Journal of Combinatorial Theory, Series B 87, no. 1 (2003): 81–129. http://dx.doi.org/10.1016/s0095-8956(02)00029-1.
Full textEaston, T., and R. Gary Parker. "On completing latin squares." Discrete Applied Mathematics 113, no. 2-3 (2001): 167–81. http://dx.doi.org/10.1016/s0166-218x(00)00282-1.
Full textKrafft, Olaf, Herbert Pahlings, and Martin Schaefer. "Diagonal-complete latin squares." European Journal of Combinatorics 24, no. 3 (2003): 229–37. http://dx.doi.org/10.1016/s0195-6698(03)00025-8.
Full textHäggkvist, R. "All-even latin squares." Discrete Mathematics 157, no. 1-3 (1996): 127–46. http://dx.doi.org/10.1016/0012-365x(95)00263-v.
Full textShen, Xiaojun. "Generalized Latin squares II." Discrete Mathematics 143, no. 1-3 (1995): 221–42. http://dx.doi.org/10.1016/0012-365x(95)98135-s.
Full textChetwynd, A. G., and A. J. W. Hilton. "Outline symmetric latin squares." Discrete Mathematics 97, no. 1-3 (1991): 101–17. http://dx.doi.org/10.1016/0012-365x(91)90426-3.
Full textHilton, Anthony J. W., and Jerzy Wojciechowski. "Amalgamating infinite latin squares." Discrete Mathematics 292, no. 1-3 (2005): 67–81. http://dx.doi.org/10.1016/j.disc.2003.09.016.
Full textWoodcock, C. F. "On orthogonal latin squares." Journal of Combinatorial Theory, Series A 43, no. 1 (1986): 146–48. http://dx.doi.org/10.1016/0097-3165(86)90034-8.
Full textHäggkvist, Roland, and Jeannette C. M. Janssen. "All-even latin squares." Discrete Mathematics 157, no. 1-3 (1996): 199–206. http://dx.doi.org/10.1016/s0012-365x(96)83015-9.
Full textLakic, Nada. "Classification of Latin squares." Journal of Agricultural Sciences, Belgrade 47, no. 1 (2002): 105–12. http://dx.doi.org/10.2298/jas0201105l.
Full textShen, Xiaojun, Y. Z. Cai, C. L. Liu, and Clyde P. Kruskal. "Generalized latin squares I." Discrete Applied Mathematics 25, no. 1-2 (1989): 155–78. http://dx.doi.org/10.1016/0166-218x(89)90052-8.
Full textWanless, Ian M. "Diagonally cyclic latin squares." European Journal of Combinatorics 25, no. 3 (2004): 393–413. http://dx.doi.org/10.1016/j.ejc.2003.09.014.
Full textMarini, A., and G. Pirillo. "Signs on Latin Squares." Advances in Applied Mathematics 15, no. 4 (1994): 490–505. http://dx.doi.org/10.1006/aama.1994.1021.
Full textKwan, Matthew, Ashwin Sah, Mehtaab Sawhney, and Michael Simkin. "Substructures in Latin squares." Israel Journal of Mathematics 256, no. 2 (2023): 363–416. http://dx.doi.org/10.1007/s11856-023-2513-9.
Full textKirichenko, V. V., M. A. Khibina, V. M. Zhuravlev, and O. V. Zelensky. "Quivers and Latin squares." São Paulo Journal of Mathematical Sciences 10, no. 2 (2015): 286–300. http://dx.doi.org/10.1007/s40863-015-0031-3.
Full textDonovan, Diane, Mike Grannell, and Emine Şule Yazıcı. "Embedding partial Latin squares in Latin squares with many mutually orthogonal mates." Discrete Mathematics 343, no. 6 (2020): 111835. http://dx.doi.org/10.1016/j.disc.2020.111835.
Full textBrawley, J. V., and Gary L. Mullen. "Infinite Latin squares containing nested sets of mutually orthogonal finite Latin squares." Publicationes Mathematicae Debrecen 39, no. 1-2 (2022): 135–41. http://dx.doi.org/10.5486/pmd.1991.39.1-2.09.
Full textLewis, James R. "Pairs of Latin Squares to Counterbalance Sequential Effects and Pairing of Conditions and Stimuli." Proceedings of the Human Factors Society Annual Meeting 33, no. 18 (1989): 1223–27. http://dx.doi.org/10.1177/154193128903301812.
Full textAlpoge, Levent. "Square-root cancellation for the signs of Latin squares." Combinatorica 37, no. 2 (2015): 137–42. http://dx.doi.org/10.1007/s00493-015-3373-7.
Full textCAVENAGH, NICHOLAS J., and IAN M. WANLESS. "THERE ARE ASYMPTOTICALLY THE SAME NUMBER OF LATIN SQUARES OF EACH PARITY." Bulletin of the Australian Mathematical Society 94, no. 2 (2016): 187–94. http://dx.doi.org/10.1017/s0004972716000174.
Full textParker, E. T., and Lawrence Somer. "A Partial Generalization of Mann's Theorem Concerning Orthogonal Latin Squares." Canadian Mathematical Bulletin 31, no. 4 (1988): 409–13. http://dx.doi.org/10.4153/cmb-1988-059-7.
Full textRathod, Abhay B., and Sanjay M. Gulhane. "An Efficient Parallel Algorithm for Latin Square Design: A Multi Core CPU Approach." International Journal of System Modeling and Simulation 2, no. 2 (2017): 27. http://dx.doi.org/10.24178/ijsms.2017.2.2.27.
Full textEvangelaras, H., and C. Koukouvinos. "Interaction detection in Latin and Hyper-latin squares." Journal of Discrete Mathematical Sciences and Cryptography 9, no. 2 (2006): 341–48. http://dx.doi.org/10.1080/09720529.2006.10698083.
Full textShen, Honglian, Xiuling Shan, Ming Xu, and Zihong Tian. "A New Chaotic Image Encryption Algorithm Based on Transversals in a Latin Square." Entropy 24, no. 11 (2022): 1574. http://dx.doi.org/10.3390/e24111574.
Full textDe las Cuevas, Gemma, Tim Netzer, and Inga Valentiner-Branth. "Magic squares: Latin, semiclassical, and quantum." Journal of Mathematical Physics 64, no. 2 (2023): 022201. http://dx.doi.org/10.1063/5.0127393.
Full textDębski, Michał, and Jarosław Grytczuk. "Latin squares from multiplication tables." Journal of Combinatorial Designs 29, no. 5 (2021): 331–36. http://dx.doi.org/10.1002/jcd.21769.
Full text