To see the other types of publications on this topic, follow the link: Lattic.

Journal articles on the topic 'Lattic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Lattic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Koohnavard, R., and A. Borumand Saeid. "(Skew) Filters in Residuated Skew Lattic." Scientific Annals of Computer Science 2018, no. 1 (2018): 115–40. http://dx.doi.org/10.7561/sacs.2018.1.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liu Qiu-Zu, Kou Zi-Ming, Han Zhen-Nan, and Gao Gui-Jun. "Dynamic process simulation of droplet spreading on solid surface by lattic Boltzmann method." Acta Physica Sinica 62, no. 23 (2013): 234701. http://dx.doi.org/10.7498/aps.62.234701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vogt, H., V. Quaschning, B. Ziemer, and M. Meisel. "Synthese und Kristallstruktur von Tris(diethylamino)benzylphosphonium- bromiden: [(C2H5)2N]3PCH2C6H5+ Br- · CH3CN und [(C2H5)2N]3PCH2C6H5+ Br3- / Synthesis and Crystal Structures of Tris(diethylamino)benzylphosphonium Bromides: [(C2H5)2N]3PCH2C6H5+ Br- · CH3CN und [(C2H5)2N]3PCH2C6H5+ Br3-." Zeitschrift für Naturforschung B 52, no. 10 (1997): 1175–80. http://dx.doi.org/10.1515/znb-1997-1004.

Full text
Abstract:
Tris(diethylamino)benzylphosphonium bromide, [(C2H5)2N]3PCH2C6H5+ Br− · CH3CN (1), has been prepared by the reaction of tris(diethylamino)phosphine with benzylbromide in acetonitrile and its structure determined. The colorless crystals are monoclinic, space group P21/n, Z = 4, a = 954.5(11), b = 2552(3), c = 1017.9(9) pm, β = 92.27(8)°. The lattic contains Br− anions and [(C2H5)2N]3PCH2C6H5+ cations. [(C2H5)2N]3PCH2C6H5]+ Br3− (2) has been obtained by treating compound 1 with equimolar quantities of elemental bromine in acetonitrile solution. The yellow-red crystals of 2 are monoclinic, space
APA, Harvard, Vancouver, ISO, and other styles
4

Xiao, Zhuan Wen, and Lei Huang. "Analysis and Treatment of Landslide at the Tunnel Portal in Nanjing Road." Applied Mechanics and Materials 353-356 (August 2013): 686–91. http://dx.doi.org/10.4028/www.scientific.net/amm.353-356.686.

Full text
Abstract:
The landslide at the tunnel portal in Nanjing Road is mainly determined by a weak intercalated layer between the completely weathered bedrock and the strongly weathered bedrock. The weak intercalated layer has low permeability and weak shear strength, and its interface dip outside of the slope. As the consequence, landslide is likely to happen again due to a rainstorm or other inducement. In order to prevent a second landslide, a comprehensive treatment scheme is presented, which implements anti-slide piles as the major treatment and several auxiliary treatments including filling and compactin
APA, Harvard, Vancouver, ISO, and other styles
5

Lätti, Priit. "Asustuspildist muinasaegsel Järvamaal - asustuskeskused ja linnused." Mäetagused 28 (2004): 123–48. http://dx.doi.org/10.7592/mt2004.28.latti.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

LIN, K. Y., and W. J. TZENG. "ON THE ROW-CONVEX POLYGON GENERATING FUNCTION FOR THE CHECKERBOARD LATTICE." International Journal of Modern Physics B 05, no. 20 (1991): 3275–85. http://dx.doi.org/10.1142/s0217979291001292.

Full text
Abstract:
Exact solution for the most general four-variable generating function of the number of row-convex polygons on the checkerboard lattice is derived. Previous results for the square lattice, rectangular lattice, and honeycomb latticc are special cases of our solution.
APA, Harvard, Vancouver, ISO, and other styles
7

Latif, Omar. "Alcohol-mediated polarization of type 1 and type 2 immune responses." Frontiers in Bioscience 7, no. 1-3 (2002): a135. http://dx.doi.org/10.2741/latif.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jakubík, Ján. "On the congruence lattice of an abelian lattice ordered group." Mathematica Bohemica 126, no. 3 (2001): 653–60. http://dx.doi.org/10.21136/mb.2001.134195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jakubík, Ján. "Closure operators on the lattice of radical classes of lattice ordered groups." Czechoslovak Mathematical Journal 38, no. 1 (1988): 71–77. http://dx.doi.org/10.21136/cmj.1988.102201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jakubík, Ján. "Convexities of lattice ordered groups." Mathematica Bohemica 121, no. 1 (1996): 59–67. http://dx.doi.org/10.21136/mb.1996.125936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Rachůnek, Jiří. "Spectra of autometrized lattice algebras." Mathematica Bohemica 123, no. 1 (1998): 87–94. http://dx.doi.org/10.21136/mb.1998.126293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zelinka, Bohdan. "Domatic numbers of lattice graphs." Czechoslovak Mathematical Journal 40, no. 1 (1990): 113–15. http://dx.doi.org/10.21136/cmj.1990.102363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Merlier, Thérèse. "On lattice ordered periodic semigroups." Czechoslovak Mathematical Journal 43, no. 1 (1993): 95–106. http://dx.doi.org/10.21136/cmj.1993.128377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Jakubík, Ján. "On half lattice ordered groups." Czechoslovak Mathematical Journal 46, no. 4 (1996): 745–67. http://dx.doi.org/10.21136/cmj.1996.127331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Novák, Vítězslav. "Some properties of lattice homomorphisms." Časopis pro pěstování matematiky 114, no. 2 (1989): 138–45. http://dx.doi.org/10.21136/cpm.1989.108712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Rong, Wang, Ma Lina, and K. H. Kuo. "A Metastable Crystalline Phase Coexisted with the Decagonal Quasicrystals in Rapidly Solidified Al-Ir Al-Pd and Al-Pt Alloys." Proceedings, annual meeting, Electron Microscopy Society of America 48, no. 1 (1990): 572–73. http://dx.doi.org/10.1017/s0424820100181622.

Full text
Abstract:
Up to now, decagonal quasicrystals have been found in the alloys of whole Al-Pt group metals [1,2]. The present paper is concerned with the TEM study of a hitherto unreported hexagonal phase in rapidly solidified Al-Ir, Al-Pd and Al-Pt alloys.The ribbons of Al5Ir, Al5Pd and Al5Pt were obtained by spun-quenching. Specimens cut from the ribbons were ion thinned and examined in a JEM 100CX electron microscope. In both rapidly solidified Al5Ir and Al5Pd alloys, the decagonal quasicrystal, with rosette or dendritic morphologies can be easily identified by its electron diffraction patterns(EDPs). Th
APA, Harvard, Vancouver, ISO, and other styles
17

Jakubík, Ján. "Sequential convergences in a vector lattice." Mathematica Bohemica 123, no. 1 (1998): 33–48. http://dx.doi.org/10.21136/mb.1998.126295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Jasem, Milan. "On ideals of lattice ordered monoids." Mathematica Bohemica 132, no. 4 (2007): 369–87. http://dx.doi.org/10.21136/mb.2007.133965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Liu, Dianzi, Xue Zhou, and Vassili Toropov. "Metamodels for Composite Lattice Fuselage Design." International Journal of Materials, Mechanics and Manufacturing 4, no. 3 (2015): 175–78. http://dx.doi.org/10.7763/ijmmm.2016.v4.250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Jakubík, Ján. "On strictly positive lattice ordered semigroups." Czechoslovak Mathematical Journal 36, no. 1 (1986): 31–34. http://dx.doi.org/10.21136/cmj.1986.102062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Jakubík, Ján. "Radical subgroups of lattice ordered groups." Czechoslovak Mathematical Journal 36, no. 2 (1986): 285–97. http://dx.doi.org/10.21136/cmj.1986.102092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Harminc, Matúš. "Sequential convergences on lattice ordered groups." Czechoslovak Mathematical Journal 39, no. 2 (1989): 232–38. http://dx.doi.org/10.21136/cmj.1989.102298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Jakubík, Ján. "Retracts of abelian lattice ordered groups." Czechoslovak Mathematical Journal 39, no. 3 (1989): 477–85. http://dx.doi.org/10.21136/cmj.1989.102319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Rachůnek, Jiří. "Structure spaces of lattice ordered groups." Czechoslovak Mathematical Journal 39, no. 4 (1989): 686–91. http://dx.doi.org/10.21136/cmj.1989.102345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Jakubík, Ján. "Retract varieties of lattice ordered groups." Czechoslovak Mathematical Journal 40, no. 1 (1990): 104–12. http://dx.doi.org/10.21136/cmj.1990.102362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Jakubík, Ján. "Principal convergences on lattice ordered groups." Czechoslovak Mathematical Journal 46, no. 4 (1996): 721–32. http://dx.doi.org/10.21136/cmj.1996.127329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Toumi, Mohamed Ali. "On extensions of orthosymmetric lattice bimorphisms." Mathematica Bohemica 138, no. 4 (2013): 425–37. http://dx.doi.org/10.21136/mb.2013.143515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ježek, Jaroslav, and Václav Slavík. "Random posets, lattices, and lattices terms." Mathematica Bohemica 125, no. 2 (2000): 129–33. http://dx.doi.org/10.21136/mb.2000.125956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Slavík, Václav. "On lattices with isomorphic interval lattices." Czechoslovak Mathematical Journal 35, no. 4 (1985): 550–54. http://dx.doi.org/10.21136/cmj.1985.102049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Jakubík, Ján. "Sequential convergences on free lattice ordered groups." Mathematica Bohemica 117, no. 1 (1992): 48–54. http://dx.doi.org/10.21136/mb.1992.126229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Jakubík, Ján. "On projective intervals in a modular lattice." Mathematica Bohemica 117, no. 3 (1992): 293–98. http://dx.doi.org/10.21136/mb.1992.126283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jakubík, Ján. "Directly indecomposable direct factors of a lattice." Mathematica Bohemica 121, no. 3 (1996): 281–92. http://dx.doi.org/10.21136/mb.1996.125983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Jakubík, Ján. "Weak $\sigma $-distributivity of lattice ordered groups." Mathematica Bohemica 126, no. 1 (2001): 151–59. http://dx.doi.org/10.21136/mb.2001.133918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Gramaglia, Hector. "On a certain construction of lattice expansions." Mathematica Bohemica 129, no. 1 (2004): 1–9. http://dx.doi.org/10.21136/mb.2004.134105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ježek, J., and V. Slavík. "Compact elements in the lattice of varieties." Mathematica Bohemica 130, no. 1 (2005): 107–10. http://dx.doi.org/10.21136/mb.2005.134225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kuznetsov, S. P. "Some Lattice Models with Hyperbolic Chaotic Attractors." Nelineinaya Dinamika 16, no. 1 (2020): 13–21. http://dx.doi.org/10.20537/nd200102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wei Xiong, Wei Xiong, Yin Zhang Yin Zhang, Zhaoyuan Ma Zhaoyuan Ma, and Xuzong Chen Xuzong Chen. "Estimating optical lattice alignment by RF spectroscopy." Chinese Optics Letters 10, no. 9 (2012): 090201–90205. http://dx.doi.org/10.3788/col201210.090201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

S. Deachapunya, S. Deachapunya, and S. Srisuphaphon S. Srisuphaphon. "Accordion lattice based on the Talbot effect." Chinese Optics Letters 12, no. 3 (2014): 031101–31104. http://dx.doi.org/10.3788/col201412.031101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Vrancken-Mawet, L., and Georges Hansoul. "The subalgebra lattice of a Heyting algebra." Czechoslovak Mathematical Journal 37, no. 1 (1987): 34–41. http://dx.doi.org/10.21136/cmj.1987.102132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Conrad, Paul F., and Jorge Martinez. "Locally finite conditions on lattice-ordered groups." Czechoslovak Mathematical Journal 39, no. 3 (1989): 432–44. http://dx.doi.org/10.21136/cmj.1989.102314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Jakubík, Ján. "Lattice ordered groups having a largest convergence." Czechoslovak Mathematical Journal 39, no. 4 (1989): 717–29. http://dx.doi.org/10.21136/cmj.1989.102349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Jakubík, Ján. "Affine completeness of complete lattice ordered groups." Czechoslovak Mathematical Journal 45, no. 3 (1995): 571–76. http://dx.doi.org/10.21136/cmj.1995.128545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Chen, Yuanqian, Paul Conrad, and Michael Darnel. "Finite-valued subgroups of lattice-ordered groups." Czechoslovak Mathematical Journal 46, no. 3 (1996): 501–12. http://dx.doi.org/10.21136/cmj.1996.127311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Pondělíček, Bedřich. "Inverse semirings and their lattice of congruences." Czechoslovak Mathematical Journal 46, no. 3 (1996): 513–22. http://dx.doi.org/10.21136/cmj.1996.127312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zabeti, O. "Топологические решеточно упорядоченные кольца с AM-свойством". Владикавказский математический журнал, № 1 (18 березня 2021): 20–31. http://dx.doi.org/10.46698/a8913-4331-4311-d.

Full text
Abstract:
Motivated by the recent definition of the $AM$-property in locally solid vector lattices [O. Zabeti, doi: 10.1007/s41980-020-00458-7], in this note, we try to investigate some counterparts of those results in the category of all locally solid lattice rings. In fact, we characterize locally solid lattice rings in which order bounded sets and bounded sets agree. Furthermore, with the aid of the $AM$-property, we find conditions under which order bounded group homomorphisms and different types of bounded group homomorphisms coincide. Moreover, we show that each class of bounded order bounded grou
APA, Harvard, Vancouver, ISO, and other styles
46

Kühr, Jan. "Spectral topologies of dually residuated lattice-ordered monoids." Mathematica Bohemica 129, no. 4 (2004): 379–91. http://dx.doi.org/10.21136/mb.2004.134046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Rachůnek, Jiří, and Dana Šalounová. "Lexicographic extensions of dually residuated lattice ordered monoids." Mathematica Bohemica 129, no. 3 (2004): 283–95. http://dx.doi.org/10.21136/mb.2004.134151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Anderson, Marlow. "Archimedean equivalence for strictly positive lattice-ordered semigroups." Czechoslovak Mathematical Journal 36, no. 1 (1986): 18–27. http://dx.doi.org/10.21136/cmj.1986.102060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Pondělíček, Bedřich. "Commutative semigroups whose lattice of tolerances is Boolean." Czechoslovak Mathematical Journal 38, no. 2 (1988): 226–30. http://dx.doi.org/10.21136/cmj.1988.102216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Merlier, Thérèse. "Some properties of lattice ordered Rees matrix semigroups." Czechoslovak Mathematical Journal 38, no. 4 (1988): 573–77. http://dx.doi.org/10.21136/cmj.1988.102252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!