Academic literature on the topic 'Lattice code'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lattice code.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lattice code"
Damen, O., A. Chkeif, and J. C. Belfiore. "Lattice code decoder for space-time codes." IEEE Communications Letters 4, no. 5 (May 2000): 161–63. http://dx.doi.org/10.1109/4234.846498.
Full textMathis, Alexander, Andreas V. M. Herz, and Martin Stemmler. "Optimal Population Codes for Space: Grid Cells Outperform Place Cells." Neural Computation 24, no. 9 (September 2012): 2280–317. http://dx.doi.org/10.1162/neco_a_00319.
Full textKENDZIORRA, ANDREAS, and STEFAN E. SCHMIDT. "NETWORK CODING WITH MODULAR LATTICES." Journal of Algebra and Its Applications 10, no. 06 (December 2011): 1319–42. http://dx.doi.org/10.1142/s0219498811005208.
Full textChoi, Sooyoung, Azamat Khassenov, and Deokjung Lee. "ICONE23-1905 RESONANCE INTERFERENCE METHOD IN LATTICE PHYSICS CODE STREAM." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015): _ICONE23–1—_ICONE23–1. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-1_430.
Full textJain, Sapna. "Singleton's Bound in Euclidean Codes." Algebra Colloquium 17, spec01 (December 2010): 741–48. http://dx.doi.org/10.1142/s1005386710000714.
Full textWan, Qian, Kai Niu, and Jia Ru Lin. "K-Best Sphere Decoding of Lattice Codes Based on CRC Code." Applied Mechanics and Materials 321-324 (June 2013): 2864–67. http://dx.doi.org/10.4028/www.scientific.net/amm.321-324.2864.
Full textConway, J., and N. Sloane. "Soft decoding techniques for codes and lattices, including the Golay code and the Leech lattice." IEEE Transactions on Information Theory 32, no. 1 (January 1986): 41–50. http://dx.doi.org/10.1109/tit.1986.1057135.
Full textKrause, Mathias J., Adrian Kummerländer, Samuel J. Avis, Halim Kusumaatmaja, Davide Dapelo, Fabian Klemens, Maximilian Gaedtke, et al. "OpenLB—Open source lattice Boltzmann code." Computers & Mathematics with Applications 81 (January 2021): 258–88. http://dx.doi.org/10.1016/j.camwa.2020.04.033.
Full textHarada, Masaaki, and Masaaki Kitazume. "Z6-Code Constructions of the Leech Lattice and the Niemeier Lattices." European Journal of Combinatorics 23, no. 5 (July 2002): 573–81. http://dx.doi.org/10.1006/eujc.2002.0557.
Full textHorsman, Clare, Austin G. Fowler, Simon Devitt, and Rodney Van Meter. "Surface code quantum computing by lattice surgery." New Journal of Physics 14, no. 12 (December 7, 2012): 123011. http://dx.doi.org/10.1088/1367-2630/14/12/123011.
Full textDissertations / Theses on the topic "Lattice code"
Prahatheesan, Vicknarajah. "A lattice filter for CDMA overlay." Thesis, Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B20665684.
Full textLandelius, Kim. "Qualification of WestinghouseBWR lattice physics methods againstcritical experiments." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-310815.
Full textFlygare, Mattias. "Non-abelian braiding in abelian lattice models from lattice dislocations." Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-31690.
Full textTopologisk ordning är ett nytt område inom fysik som bland annat verkar lovande som verktyg för förverkligandet av kvantdatorer. En av storheterna som karakteriserar topologiska tillstånd är det totala antalet degenererade grundtillstånd, den topologiska degenerationen. Topologisk ordning har också föreslagits som ett möjligt sätt att lagra kvantdata. Vi undersöker tvådimensionella gittermodeller definierade på en sluten mångfald, specifikt en torus, och finner att dessa system påvisar topologisk degeneration som är proportionerlig mot mångfaldens topologiska genus. När dislokationer introduceras i gittret finner vi att grundtillståndets degeneration ökar, något som kan ses som en artificiell ökning av mångfaldens genus. Vi härleder sammanslagningsregler och flätningsregler för modellen och använder sedan dessa för att räkna ut flätegenskaperna hos själva dislokationerna. Dessa visar sig likna icke-abelska anyoner, en egenskap som är viktiga för möjligheten att kunna utföra universella kvantberäkningar. Det går också att emulera dislokationer i gittret genom att lägga på ett yttre fält. Detta gör dem mer realistiska för eventuella experimentella realisationer.
Pedersen, Daniel. "Development of a Kinetic Monte Carlo Code." Thesis, Uppsala universitet, Materialteori, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-202711.
Full textFerdinand, N. S. (Nuwan Suresh). "Low complexity lattice codes for communication networks." Doctoral thesis, Oulun yliopisto, 2016. http://urn.fi/urn:isbn:9789526210964.
Full textTiivistelmä Hilakoodit saavuttavat AWGN kapasiteetin ja sopivat luonnollisesti moniin monen päätelaitteen verkkoihin niihin sisältyvän rakenteen vuoksi. Vaikka lukuisat informaatioteoreettiset tutkimustyöt todistavat hilakoodien tärkeyden näille verkoille, käytännössä alhaisen kompleksisuuden hilajärjestelmiä on vielä vähän. Näin ollen tämän tutkielman tarkoitus on kehittää useita metodeja, jotta hilakoodeista saadaan käytännöllisiä viestintäverkkoihin. Aluksi, ehdotamme tehokkaan hilakoodausjärjestelmän reaaliarvoisille, full duplexisille yksi- ja kaksisuuntaisille välittäjäkanaville. Käytämme hilan hajottamista, superpositiota ja lohko-Markov -koodausta ehdottaessamme yksinkertaiset ja siltikin kapasiteetin saavuttavat koodaus- ja dekoodausjärjestelmät näihin välityskanaviin. Käyttämällä informaatioteoreettisia työkaluja, osoitamme näiden järjestelmien saavutettavat nopeudet, jotka ovat yhtä suuret kuin parhaimmat tunnetut nopeudet. Sitten rakennamme käytännölliset ja alhaisen monimutkaisuuden toteutukset ehdotetuille välitysjärjestelmille käyttäen alhaisen tiheyden hilakoodeja. Esitämme näille järjestelmille numeeriset arvioinnit, jotka näyttävät että nämä toteutukset saavuttavat tehokkuuden, joka on 2.5dB:n päässä teoreettisista rajoista. Tutkimme muotoilu- ja koodaushäviön vaikutusta välityskanavien tehokkuuteen. Sitten, ehdotamme alhaisen monimutkaisuuden hilakoodirakenteen, joka tarjoaa korkean muotoilu- ja koodausvahvistuksen. Ensin, kokonaislukuinformaatio on koodattu muotoiltuihin kokonaislukuihin. Esitämme kaksi metodia tähän tehtävään; 'Voronoi kokonaisluvut' ja 'ei yhtenäiset kokonaisluvut'. Näillä muotoilluilla kokonaisluvuilla on muotoiluvahvistusta kokonaislukuhilalle. Toisena askeleena, esitämme yleiset puitteet systemaattiseen kokonaislukujen koodaukseen käyttäen korkeaulotteisia hiloja alhaisen kolmiogeneraattori- tai pariteettivarmistusmatriiseja, jotka säilyttävät samalla muotoiluvahvistuksen. Ehdotettua järjestelmää voidaan käyttää muotoilemaan korkeaulotteisia hiloja kuten alhaisen tiheyden hilakoodeja, LDA-hiloja, jne. Esitämme kattavan analyysin käyttäen alhaisen tiheyden hilakoodeja. Käyttämällä muotoiluhiloina E8aa ja BW16a, näytämme numeerisesti 'Voronoi kokonaislukujen' käyttämisen seurauksena saavutettavat hilojen muotoiluvahvistukset, jotka ovat jopa 0.65dB ja 0.86dB. Näytämme myös numeerisesti että 'ei yhtenäisillä kokonaisluvuilla' on muotoiluvahvistusta jopa 1.25dB. Nämä muotoiluoperaatiot voidaan toteuttaa alhaisemmalla monimutkaisuudella kuin aikaisemmat 'alhaisen tiheyden hilakoodien muotoilumenetelmät' ja muotoiluvahvistukset ovat suuremmat kuin aikaisemmin raportoidut tapaukset, jotka ovat suuruusluokaltaan 0.4dB. Viimeiseksi, ehdotamme käytännöllisen koodikonstruktion alhaisella monimutkaisuudella 'laske ja lähetä' -menetelmään. Kehitämme uuden koodikonstruktion, jota kutsumme 'sekoitetuksi sisäkkäiseksi hilakoodikonstruktioksi'. Tämä koodikonstruktio käyttää kahta eroteltavissa olevaa sisäkkäistä hilaa koodaamaan kokonaisluvut siellä, missä muotoilu tehdään pienen ulottuvuuden hiloilla korkean muotoiluvahvistuksella ja koodaus toteutetaan käyttäen korkean koodausvahvistuksen omaavaa korkeaulottuvuuksista hilaa. Tämä konstruktio säilyttää muotoilu- ja koodausvahvistukset kullekin muotoilu- ja koodaushilalle. Lisäksi, todistamme isomorfismin olemassaolon tässä konstruktiossa siten, että lineaarisen hilakoodien kombinaatio voidaan kuvata lineaarisena kokonaislukujen kombinaationa äärellisessä kunnassa. Näin ollen tätä konstruktiota voidaan helposti käyttää missä tahansa 'laske ja lähetä' -sovelluksessa. Esitämme muokatun LDLC dekooderin lineaarisen viestikombinaation estimointiin. Arvioimme tehon numeerisesti
Boufatah, Samir. "Effects of Code Dimension in Lattice-Reduction-Aided MIMO Receivers : Optimality in Diversity-Multiplexing Tradeoff." Thesis, KTH, Signalbehandling, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-53770.
Full textJunla, Nakorn. "Classification of certain genera of codes, lattices and vertex operator algebras." Diss., Kansas State University, 2014. http://hdl.handle.net/2097/18181.
Full textDepartment of Mathematics
Gerald H. Höhn
We classify the genera of doubly even binary codes, the genera of even lattices, and the genera of rational vertex operator algebras (VOAs) arising from the modular tensor categories (MTCs) of rank up to 4 and central charges up to 16. For the genera of even lattices, there are two types of the genera: code type genera and non code type genera. The number of the code type genera is finite. The genera of the lattices of rank larger than or equal to 17 are non code type. We apply the idea of a vector valued modular form and the representation of the modular group SL[subscript]2(Z) in [Bantay2007] to classify the genera of the VOAs arising from the MTCs of ranks up to 4 and central charges up to 16.
Tulip, Paul Robert. "Dielectric and lattice dynamical properties of molecular crystals via density functional perturbation theory : implementation within a first principles code." Thesis, Durham University, 2004. http://etheses.dur.ac.uk/2969/.
Full textCorlay, Vincent. "Decoding algorithms for lattices." Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAT050.
Full textThis thesis discusses two problems related to lattices, an old problem and a new one.Both of them are lattice decoding problems: Namely, given a point in the space, find the closest lattice point.The first problem is related to channel coding in moderate dimensions. While efficient lattice schemes exist in low dimensions n < 30 and high dimensions n > 1000, this is not the case of intermediate dimensions. We investigate the decoding of interesting lattices in these intermediate dimensions. We introduce new families of lattices obtained by recursively applying parity checks. These families include famous lattices, such as Barnes-Wall lattices, the Leech and Nebe lattices, as well as new parity lattices.We show that all these lattices can be efficiently decoded with an original recursive list decoder.The second problem involves neural networks. Since 2016 countless papers tried to use deep learning to solve the decoding/detection problem encountered in digital communications. We propose to investigate the complexity of the problem that neural networks should solve. We introduce a new approach to the lattice decoding problem to fit the operations performed by a neural network. This enables to better understand what a neural network can and cannot do in the scope of this problem, and get hints regarding the best architecture of the neural network. Some computer simulations validating our analysis are provided
Jimenez, Juan Pablo Ibieta. "Campos de Gauge e matéria na rede - generalizando o Toric Code." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-16072015-144543/.
Full textTopological phases of matter are characterized for having a topologically dependent ground state degeneracy, anyonic quasi-particle bulk excitations and gapless edge excitations. Different topologically ordered phases of matter can not be distinguished by te usual Ginzburg-Landau scheme of symmetry breaking. Therefore, a new mathematical framework for the study of such phases is needed. In this dissertation we present the simplest example of a topologically ordered system, namely, the \\Toric Code (TC) introduced by A. Kitaev in [1]. Its ground state is 4-fold degenerate when embedded on the surface of a torus and its elementary excited states are interpreted as quasi-particle anyons. The TC is a particular case of a more general class of lattice models known as Quantum Double Models (QDMs) which can be interpreted as an implementation of (2+1) Lattice Gauge Theories in the Hamiltonian formulation with discrete gauge group G. We generalize these models by the inclusion of matter fields at the vertices of the lattice. We give a detailed construction of such models, we show they are exactly solvable and explore the case when the gauge group is set to be the abelian Z_2 cyclic group and the matter degrees of freedom to be elements of a 2-dimensional vector space V_2. Furthermore, we show that the ground state degeneracy is not topologically dependent and obtain the most elementary excited states.
Books on the topic "Lattice code"
Rouben, B. Description of the lattice code POWDERPUFS-V. Mississauga, Ont: AECL, 1995.
Find full textOggier, Frédérique. Algebraic number theory and code design for Rayleigh fading channels. Hanover, MA: Now, 2004.
Find full textEbeling, Wolfgang. Lattices and Codes. Wiesbaden: Springer Fachmedien Wiesbaden, 2013. http://dx.doi.org/10.1007/978-3-658-00360-9.
Full textEbeling, Wolfgang. Lattices and Codes. Wiesbaden: Vieweg+Teubner Verlag, 1994. http://dx.doi.org/10.1007/978-3-322-96879-1.
Full textEbeling, Wolfgang. Lattices and Codes. Wiesbaden: Vieweg+Teubner Verlag, 2002. http://dx.doi.org/10.1007/978-3-322-90014-2.
Full textFriedrich, Hirzebruch, ed. Lattices and codes: A course partially based on lectures by F. Hirzebruch. Braunschweig/Wiesbaden: Vieweg, 1994.
Find full textFriedrich, Hirzebruch, ed. Lattices and codes: A course partially based on lectures by F. Hirzebruch. 2nd ed. Braunschweig/Wiesbaden: Vieweg, 2002.
Find full textConstellation shaping, nonlinear precoding, and trellis coding for voiceband telephone channel modems with emphasis on ITU-T recommendation V.34. Boston: Kluwer Academic Publishers, 2002.
Find full textMohamad, A. A. Lattice Boltzmann method: Fundamentals and engineering applications with computer codes / A. A. Mohamad. London: Springer, 2011.
Find full textBook chapters on the topic "Lattice code"
Pivanti, Marcello, Filippo Mantovani, Sebastiano Fabio Schifano, Raffaele Tripiccione, and Luca Zenesini. "An Optimized Lattice Boltzmann Code for BlueGene/Q." In Parallel Processing and Applied Mathematics, 385–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55195-6_36.
Full textBruno, E., and B. Ginatempo. "A KKR And KKR-CPA Code for any Bravais Lattice." In Properties of Complex Inorganic Solids, 441–46. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5943-6_53.
Full textBiferale, Luca, Filippo Mantovani, Marcello Pivanti, Fabio Pozzati, Mauro Sbragaglia, Andrea Scagliarini, Sebastiano Fabio Schifano, Federico Toschi, and Raffaele Tripiccione. "A Multi-GPU Implementation of a D2Q37 Lattice Boltzmann Code." In Parallel Processing and Applied Mathematics, 640–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31464-3_65.
Full textAmrani, Ofer, Yair Be'ery, and Alexander Vardy. "Bounded-distance decoding of the Leech lattice and the Golay code." In Algebraic Coding, 236–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-57843-9_24.
Full textAttig, N., S. Güsken, P. Lacock, Th Lippert, K. Schilling, P. Ueberholz, and J. Viehoff. "Running a code for lattice quantum chromodynamics efficiently on CRAY T3E systems." In High-Performance Computing and Networking, 183–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0037145.
Full textCalore, Enrico, Sebastiano Fabio Schifano, and Raffaele Tripiccione. "On Portability, Performance and Scalability of an MPI OpenCL Lattice Boltzmann Code." In Lecture Notes in Computer Science, 438–49. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-14313-2_37.
Full textLammers, Peter, Kamen N. Beronov, Gunther Brenner, and Franz Durst. "Direct Simulation with the Lattice Boltzmann Code BEST of Developed Turbulence in Channel Flows." In High Performance Computing in Science and Engineering, Munich 2002, 43–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55526-8_4.
Full textImparato, Alberto, Maurizio Giordano, and Mario Mango Furnari. "Parallelization and vectorization effects on a code simulating a vitreous lattice model with constrained dynamics." In Lecture Notes in Computer Science, 145–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/bfb0094918.
Full textGuo, Qian, Thomas Johansson, and Paul Stankovski. "Coded-BKW: Solving LWE Using Lattice Codes." In Lecture Notes in Computer Science, 23–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47989-6_2.
Full textThomas, Christopher E. "Meson Spectroscopy from Lattice QCD." In Light Cone 2016, 55–62. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65732-5_9.
Full textConference papers on the topic "Lattice code"
Brambilla, Michele, Dirk Hesse, and Francesco Di Renzo. "Code development (not only) for NSPT." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0418.
Full textCossu, Guido, Junichi Noaki, Shoji Hashimoto, Takashi Kaneko, Hidenori Fukaya, Peter A. Boyle, and Jun Doi. "JLQCD IroIro++ lattice code on BG/Q." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0482.
Full textUeda, Satoru. "Bridge++: an object-oriented C++ code for lattice simulations." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0412.
Full textZhang, Hongbo, Chuntao Tang, Weiyan Yang, Guangwen Bi, and Bo Yang. "Development and Verification of the PWR Lattice Code PANDA." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-66573.
Full textMatsumine, Toshiki, Brian M. Kurkoski, and Hideki Ochiai. "Construction D Lattice Decoding and Its Application to BCH Code Lattices." In GLOBECOM 2018 - 2018 IEEE Global Communications Conference. IEEE, 2018. http://dx.doi.org/10.1109/glocom.2018.8647232.
Full textUeda, Satoru, Sinya Aoki, Tatsumi Aoyama, Kazuyuki Kanaya, Hideo Matsufuru, Shinji Motoki, Yusuke Namekawa, Hidekatsu Nemura, Yusuke Taniguchi, and Naoya Ukita. "Lattice QCD code Bridge++ on multi-thread and many core accelerators." In The 32nd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.214.0036.
Full textOsborn, James. "The FUEL code project." In The 32nd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.214.0028.
Full textGottlieb, Steven, Ronald Babich, Richard C. Brower, Michael A. Clark, Balint Joo, and Guochun Shi. "Progress on the QUDA code suite." In XXIX International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.139.0033.
Full textBelfiore, Jean-Claude, and Frederique Oggier. "Secrecy gain: A wiretap lattice code design." In Its Applications (Isita2010). IEEE, 2010. http://dx.doi.org/10.1109/isita.2010.5650095.
Full textDarte, Alain, Alexandre Isoard, and Tomofumi Yuki. "Extended lattice-based memory allocation." In CGO '16: 14th Annual IEEE/ACM International Symposium on Code Generation and Optimization. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2892208.2892213.
Full textReports on the topic "Lattice code"
Jessee, Matthew, Jinan Yang, Ugur Mertyurek, William B. J. Marshall, and Andrew Holcomb. SCALE Lattice Physics Code Assessments of Accident Tolerant Fuel. Office of Scientific and Technical Information (OSTI), February 2020. http://dx.doi.org/10.2172/1606738.
Full textPattison, Martin J., Kannan N. Premnath, Sanjoy Banerjee, and Vinay Dwivedi. Development of a Prototype Lattice Boltzmann Code for CFD of Fusion Systems. Office of Scientific and Technical Information (OSTI), February 2007. http://dx.doi.org/10.2172/901573.
Full textStockman, H. W. A 3D Lattice Boltzmann Code for Modeling Flow and Multi-Component Dispersion. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/4090.
Full textNa, H., and J. Osborn. Lattice Quantum Chromodynamics (SPI, mapping, site ordering, and QPX in Lattice QCD code on Mira): ALCF-2 Early Science Program Technical Report. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1079769.
Full textMilutinovic, J., and A. G. Ruggiero. Comparison of accelerator codes for a RHIC lattice. Office of Scientific and Technical Information (OSTI), May 1988. http://dx.doi.org/10.2172/1118919.
Full textMilutinovic, J., and A. G. Ruggiero. Comparison of Accelerator Codes for a RHIC Lattice. Office of Scientific and Technical Information (OSTI), March 1989. http://dx.doi.org/10.2172/1119306.
Full textWeinstein, Marvin. CORE: A New Method for Solving Hamiltonian Lattice Systems. Office of Scientific and Technical Information (OSTI), July 2003. http://dx.doi.org/10.2172/813289.
Full textRouxelin, Pascal Nicolas, and Gerhard Strydom. IAEA CRP on HTGR Uncertainties in Modeling: Assessment of Phase I Lattice to Core Model Uncertainties. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1364525.
Full textWen, Qingsong, Minzhen Ren, and Xiaoli Ma. Fixed-point Design of the Lattice-reduction-aided Iterative Detection and Decoding Receiver for Coded MIMO Systems. Fort Belvoir, VA: Defense Technical Information Center, January 2011. http://dx.doi.org/10.21236/ada586964.
Full textHiroshi Takahashi, Upendra Rohatgi, and T.J. Downar. A proliferation resistant hexagonal tight lattice BWR fueled core for increased burnup and reduced fuel storage requirements. Annual progress report: August, 1999 to July, 2000 [DOE NERI]. Office of Scientific and Technical Information (OSTI), August 2000. http://dx.doi.org/10.2172/761537.
Full text