Journal articles on the topic 'Lattice Differential-Difference Equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Lattice Differential-Difference Equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Levi, Decio, and Miguel A. Rodriguez. "ON THE CONSTRUCTION OF PARTIAL DIFFERENCE SCHEMES II: DISCRETE VARIABLES AND SCHWARZIAN LATTICES." Acta Polytechnica 56, no. 3 (June 30, 2016): 236. http://dx.doi.org/10.14311/ap.2016.56.0236.
Full textGepreel, Khaled A., Taher A. Nofal, and Fawziah M. Alotaibi. "Exact Solutions for Nonlinear Differential Difference Equations in Mathematical Physics." Abstract and Applied Analysis 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/756896.
Full textLu, Jun-Feng. "GDTM-Padé technique for the non-linear differential-difference equation." Thermal Science 17, no. 5 (2013): 1305–10. http://dx.doi.org/10.2298/tsci1305305l.
Full textBekir, Ahmet, Ozkan Guner, Burcu Ayhan, and Adem C. Cevikel. "Exact Solutions for Fractional Differential-Difference Equations by (G'/G)-Expansion Method with Modified Riemann-Liouville Derivative." Advances in Applied Mathematics and Mechanics 8, no. 2 (January 27, 2016): 293–305. http://dx.doi.org/10.4208/aamm.2014.m798.
Full textMousa, Mohamed M., and Aidarkhan Kaltayev. "Homotopy Perturbation Method for Solving Nonlinear Differential- Difference Equations." Zeitschrift für Naturforschung A 65, no. 6-7 (July 1, 2010): 511–17. http://dx.doi.org/10.1515/zna-2010-6-705.
Full textLiu, Jian-Gen, Xiao-Jun Yang, and Yi-Ying Feng. "Analytical solutions of some integral fractional differential–difference equations." Modern Physics Letters B 34, no. 01 (December 9, 2019): 2050009. http://dx.doi.org/10.1142/s0217984920500098.
Full textGepreel, Khaled A., Taher A. Nofal, and Ali A. Al-Thobaiti. "The Modified Rational Jacobi Elliptic Functions Method for Nonlinear Differential Difference Equations." Journal of Applied Mathematics 2012 (2012): 1–30. http://dx.doi.org/10.1155/2012/427479.
Full textGepreel, Khaled A., and A. R. Shehata. "Jacobi Elliptic Solutions for Nonlinear Differential Difference Equations in Mathematical Physics." Journal of Applied Mathematics 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/710375.
Full textLevi, D., O. Ragnisco, and A. B. Shabat. "Construction of higher local (2 + 1) dimensional exponential lattice equations." Canadian Journal of Physics 72, no. 7-8 (July 1, 1994): 439–41. http://dx.doi.org/10.1139/p94-059.
Full textHON, Y. C., YUFENG ZHANG, and JIANQIN MEI. "EXACT SOLUTIONS FOR DIFFERENTIAL-DIFFERENCE EQUATIONS BY BÄCKLUND TRANSFORMATION OF RICCATI EQUATION." Modern Physics Letters B 24, no. 27 (October 30, 2010): 2713–24. http://dx.doi.org/10.1142/s0217984910025012.
Full textHe, Ji-Huan, S. K. Elagan, and Guo-Cheng Wu. "Solitary-Solution Formulation for Differential-Difference Equations Using an Ancient Chinese Algorithm." Abstract and Applied Analysis 2012 (2012): 1–6. http://dx.doi.org/10.1155/2012/861438.
Full textCOMMON, A. K., and M. MUSETTE. "Non-integrable lattice equations supporting kink and soliton solutions." European Journal of Applied Mathematics 12, no. 6 (December 2001): 709–18. http://dx.doi.org/10.1017/s0956792501004648.
Full textMousa, Mohamed Medhat, Aidarkan Kaltayev, and Hasan Bulut. "Extension of the Homotopy Perturbation Method for Solving Nonlinear Differential-Difference Equations." Zeitschrift für Naturforschung A 65, no. 12 (December 1, 2010): 1060–64. http://dx.doi.org/10.1515/zna-2010-1207.
Full textWELLS, J. C., V. E. OBERACKER, M. R. STRAYER, and A. S. UMAR. "SPECTRAL PROPERTIES OF DERIVATIVE OPERATORS IN THE BASIS-SPLINE COLLOCATION METHOD." International Journal of Modern Physics C 06, no. 01 (February 1995): 143–67. http://dx.doi.org/10.1142/s0129183195000125.
Full textMartinsson, Per-Gunnar, and Gregory J. Rodin. "Boundary algebraic equations for lattice problems." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, no. 2108 (June 2, 2009): 2489–503. http://dx.doi.org/10.1098/rspa.2008.0473.
Full textZhang, Sheng, Ying Ying Zhou, and Bin Cai. "Kink-Type Solutions of the MKdV Lattice Equation with an Arbitrary Function." Advanced Materials Research 989-994 (July 2014): 1716–19. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.1716.
Full textPolat, Refet. "Finite Difference Solution to the Space-Time Fractional Partial Differential-Difference Toda Lattice Equation." Journal of Mathematical Sciences and Modelling 1, no. 3 (December 30, 2018): 202–5. http://dx.doi.org/10.33187/jmsm.460001.
Full textFu, Wei, and Frank W. Nijhoff. "On non-autonomous differential-difference AKP, BKP and CKP equations." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477, no. 2245 (January 2021): 20200717. http://dx.doi.org/10.1098/rspa.2020.0717.
Full textLevi, D., and M. A. Rodriguez. "Symmetry group of partial differential equations and of differential difference equations: the Toda lattice versus the Korteweg-de Vries equation." Journal of Physics A: Mathematical and General 25, no. 15 (August 7, 1992): L975—L979. http://dx.doi.org/10.1088/0305-4470/25/15/013.
Full textGENG, XIANGUO, FANG LI, and BO XUE. "A GENERALIZATION OF TODA LATTICES AND THEIR BI-HAMILTONIAN STRUCTURES." Modern Physics Letters B 26, no. 13 (April 26, 2012): 1250078. http://dx.doi.org/10.1142/s0217984912500789.
Full textMeng, Fanwei. "A New Variable-Coefficient Riccati Subequation Method for Solving Nonlinear Lattice Equations." Abstract and Applied Analysis 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/810363.
Full textYildirim, O., and S. Caglak. "On the Lie symmetries of the boundary value problems for differential and difference sine-Gordon equations." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 102, no. 2 (June 30, 2021): 142–53. http://dx.doi.org/10.31489/2021m2/142-153.
Full textLI, XINGLI, ZHIPENG LI, XIANGLIN HAN, and SHIQIANG DAI. "JAMMING TRANSITION IN EXTENDED COOPERATIVE DRIVING LATTICE HYDRODYNAMIC MODELS INCLUDING BACKWARD-LOOKING EFFECT ON TRAFFIC FLOW." International Journal of Modern Physics C 19, no. 07 (July 2008): 1113–27. http://dx.doi.org/10.1142/s0129183108012698.
Full textLiu, Ning Ning. "The Numerical Solution of Richards Equation Using the Lattice Boltzmann Method." Applied Mechanics and Materials 188 (June 2012): 90–95. http://dx.doi.org/10.4028/www.scientific.net/amm.188.90.
Full textZhang, Sheng, and Dong Liu. "Multisoliton solutions of a (2+1)-dimensional variable-coefficient Toda lattice equation via Hirota’s bilinear method." Canadian Journal of Physics 92, no. 3 (March 2014): 184–90. http://dx.doi.org/10.1139/cjp-2013-0341.
Full textCARUTHERS, J. E., J. S. STEINHOFF, and R. C. ENGELS. "AN OPTIMAL FINITE DIFFERENCE REPRESENTATION FOR A CLASS OF LINEAR PDE'S WITH APPLICATION TO THE HELMHOLTZ EQUATION." Journal of Computational Acoustics 07, no. 04 (December 1999): 245–52. http://dx.doi.org/10.1142/s0218396x99000163.
Full textLi, Zhi-Fang, and Hang-Yu Ruan. "(2+1)-Dimensional Davey-Stewartson II Equation for a Two-Dimensional Nonlinear Monatomic Lattice." Zeitschrift für Naturforschung A 61, no. 1-2 (February 1, 2006): 45–52. http://dx.doi.org/10.1515/zna-2006-1-207.
Full textLi, Xinfu, and Guang Zhang. "Positive Solutions of a General Discrete Dirichlet Boundary Value Problem." Discrete Dynamics in Nature and Society 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/7456937.
Full textAslan, İsmail. "The discrete (G ′/G )-expansion method applied to the differential-difference Burgers equation and the relativistic Toda lattice system." Numerical Methods for Partial Differential Equations 28, no. 1 (July 15, 2010): 127–37. http://dx.doi.org/10.1002/num.20611.
Full textPolievoda, Yurii, Igor Tverdokhlib, and Valentina Bandura. "MODELLING OF OILY RAW MATERIAL EXCRACTION PROCESS." Vibrations in engineering and technology, no. 3(94) (November 26, 2019): 92–101. http://dx.doi.org/10.37128/2306-8744-2019-3-12.
Full textABDOU, M. A. "APPROXIMATE SOLUTIONS OF NONLINEAR DIFFERENTIAL DIFFERENCE EQUATIONS." International Journal of Computational Methods 06, no. 04 (December 2009): 569–83. http://dx.doi.org/10.1142/s0219876209002005.
Full textŠESTOVIĆ, DRAGAN. "TREE METHOD FOR OPTION PRICING UNDER STOCHASTIC VARIANCE." International Journal of Theoretical and Applied Finance 03, no. 03 (July 2000): 557. http://dx.doi.org/10.1142/s0219024900000565.
Full textXie, Fuding, Zhen Wang, and Min Ji. "Application of Symbolic Computation in Nonlinear Differential-Difference Equations." Discrete Dynamics in Nature and Society 2009 (2009): 1–8. http://dx.doi.org/10.1155/2009/158142.
Full textIgarashi, Yuji, Katsumi Itoh, and Ken Nakanishi. "Toda Lattice Solutions of Differential-Difference Equations for Dissipative Systems." Journal of the Physical Society of Japan 68, no. 3 (March 15, 1999): 791–96. http://dx.doi.org/10.1143/jpsj.68.791.
Full textGepreel, Khaled A., and A. R. Shehata. "Rational Jacobi elliptic solutions for nonlinear differential–difference lattice equations." Applied Mathematics Letters 25, no. 9 (September 2012): 1173–78. http://dx.doi.org/10.1016/j.aml.2012.02.028.
Full textXenitidis, Pavlos, Frank Nijhoff, and Sarah Lobb. "On the Lagrangian formulation of multidimensionally consistent systems." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467, no. 2135 (July 13, 2011): 3295–317. http://dx.doi.org/10.1098/rspa.2011.0124.
Full textHon, Benny Y. C., Engui Fan, and Qi Wang. "Homotopy Analysis Method for Ablowitz–Ladik Lattice." Zeitschrift für Naturforschung A 66, no. 10-11 (November 1, 2011): 599–605. http://dx.doi.org/10.5560/zna.2011-0022.
Full textWang, Qi. "Application of the Homotopy Analysis Method for Systems of Differential-Difference Equations." Zeitschrift für Naturforschung A 65, no. 10 (October 1, 2010): 811–17. http://dx.doi.org/10.1515/zna-2010-1007.
Full textBerezin, A. A. "Das an Electric Current have an Acoustic Component?" Journal of Energy Conservation 1, no. 2 (March 9, 2019): 1–14. http://dx.doi.org/10.14302/issn.2642-3146.jec-19-2663.
Full textFučík, Radek, and Robert Straka. "Equivalent finite difference and partial differential equations for the lattice Boltzmann method." Computers & Mathematics with Applications 90 (May 2021): 96–103. http://dx.doi.org/10.1016/j.camwa.2021.03.014.
Full textZhang, Sheng, and Hong-Qing Zhang. "Exp-Function Method for N-Soliton Solutions of Nonlinear Differential-Difference Equations." Zeitschrift für Naturforschung A 65, no. 11 (November 1, 2010): 924–34. http://dx.doi.org/10.1515/zna-2010-1105.
Full textSteinbach, Bernd, and Christian Posthoff. "Boolean differential equations: A common model for classes, lattices, and arbitrary sets of Boolean functions." Facta universitatis - series: Electronics and Energetics 28, no. 1 (2015): 51–76. http://dx.doi.org/10.2298/fuee1501051s.
Full textDai, Chao-Qing, and Yue-Yue Wang. "Exact Travelling Wave Solutions of Toda Lattice Equations Obtained via the Exp-Function Method." Zeitschrift für Naturforschung A 63, no. 10-11 (November 1, 2008): 657–62. http://dx.doi.org/10.1515/zna-2008-10-1109.
Full textPicandet, Vincent, and Noël Challamel. "Nonlocality of one-dimensional bilinear hardening–softening elastoplastic axial lattices." Mathematics and Mechanics of Solids 25, no. 2 (October 17, 2019): 475–97. http://dx.doi.org/10.1177/1081286519881668.
Full textAdler, Mark, Pierre van Moerbeke, and Pol Vanhaecke. "Singularity confinement for a class of m -th order difference equations of combinatorics." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, no. 1867 (July 17, 2007): 877–922. http://dx.doi.org/10.1098/rsta.2007.2090.
Full textFoupouagnigni, Mama, and Salifou Mboutngam. "On the Polynomial Solution of Divided-Difference Equations of the Hypergeometric Type on Nonuniform Lattices." Axioms 8, no. 2 (April 21, 2019): 47. http://dx.doi.org/10.3390/axioms8020047.
Full textDAI, CHAO-QING, and JIE-FANG ZHANG. "TRAVELLING WAVE SOLUTIONS TO THE COUPLED DISCRETE NONLINEAR SCHRÖDINGER EQUATIONS." International Journal of Modern Physics B 19, no. 13 (May 20, 2005): 2129–43. http://dx.doi.org/10.1142/s0217979205029778.
Full textChallamel, Noël, Attila Kocsis, and C. M. Wang. "Higher-order gradient elasticity models applied to geometrically nonlinear discrete systems." Theoretical and Applied Mechanics 42, no. 4 (2015): 223–48. http://dx.doi.org/10.2298/tam1504223c.
Full textPoklonski, N. A., A. O. Bury, N. G. Abrashina-Zhadaeva, and S. A. Vyrko. "Diffusion-drift model of ion migration over interstitial sites of a two-dimensional lattice." Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series 55, no. 3 (October 7, 2019): 355–65. http://dx.doi.org/10.29235/1561-2430-2019-55-3-355-365.
Full textABRAHAM, RALPH H., JOHN B. CORLISS, and JOHN E. DORBAND. "ORDER AND CHAOS IN THE TORAL LOGISTIC LATTICE." International Journal of Bifurcation and Chaos 01, no. 01 (March 1991): 227–34. http://dx.doi.org/10.1142/s0218127491000154.
Full text