Journal articles on the topic 'Lattice oxygen evolution reaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Lattice oxygen evolution reaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Jo, Seunghwan, Ki Hoon Shin, John Hong, and Jung Inn Sohn. "Lattice Oxygen-Catalyzed Bismuth-Cerium Oxyhydroxide Anode for Anion Exchange Membrane Water Electrolyzers." ECS Meeting Abstracts MA2024-02, no. 24 (2024): 4918. https://doi.org/10.1149/ma2024-02244918mtgabs.
Full textBosse, Jan, and Andrew Akbashev. "Probing Lattice Oxygen Oxidation in Perovskite Electrocatalysts By Resonant Inelastic X-Ray Scattering." ECS Meeting Abstracts MA2023-01, no. 47 (2023): 2517. http://dx.doi.org/10.1149/ma2023-01472517mtgabs.
Full textSchweinar, Kevin, Baptiste Gault, Isabelle Mouton, and Olga Kasian. "Lattice Oxygen Exchange in Rutile IrO2 during the Oxygen Evolution Reaction." Journal of Physical Chemistry Letters 11, no. 13 (2020): 5008–14. http://dx.doi.org/10.1021/acs.jpclett.0c01258.
Full textLiu, Jishan, Endong Jia, Kelsey A. Stoerzinger, et al. "Dynamic Lattice Oxygen Participation on Perovskite LaNiO3 during Oxygen Evolution Reaction." Journal of Physical Chemistry C 124, no. 28 (2020): 15386–90. http://dx.doi.org/10.1021/acs.jpcc.0c04808.
Full textTavassol, Hadi, Andrew Siwabessy, Jiam Vuong, Charles Bloed, Alexis Enriquez, and Shahab Derakhshan. "Chemomechanical Effects in Electrocatalysis." ECS Meeting Abstracts MA2018-01, no. 32 (2018): 1982. http://dx.doi.org/10.1149/ma2018-01/32/1982.
Full textZhao, Jia-Wei, Cheng-Fei Li, Zi-Xiao Shi, Jie-Lun Guan, and Gao-Ren Li. "Boosting Lattice Oxygen Oxidation of Perovskite to Efficiently Catalyze Oxygen Evolution Reaction by FeOOH Decoration." Research 2020 (July 10, 2020): 1–15. http://dx.doi.org/10.34133/2020/6961578.
Full textSingh, Aditya Narayan, Amir Hajibabaei, Muhammad Hanif Diorizky, Qiankai Ba, and Kyung-Wan Nam. "Remarkably Enhanced Lattice Oxygen Participation in Perovskites to Boost Oxygen Evolution Reaction." Nanomaterials 13, no. 5 (2023): 905. http://dx.doi.org/10.3390/nano13050905.
Full textQiao, Xianshu, Qishuang Zhu, Guangyao Hou, Zewei Pang, and Hongjun Kang. "Pinning effect of lattice co enhances lattice oxygen regeneration in NiFe-LDH for oxygen evolution reaction." Journal of Colloid and Interface Science 699 (December 2025): 138219. https://doi.org/10.1016/j.jcis.2025.138219.
Full textFang, Hengyi, Taizhong Huang, Dong Liang, et al. "Prussian blue analog-derived 2D ultrathin CoFe2O4 nanosheets as high-activity electrocatalysts for the oxygen evolution reaction in alkaline and neutral media." Journal of Materials Chemistry A 7, no. 13 (2019): 7328–32. http://dx.doi.org/10.1039/c9ta00640k.
Full textCai, Chao, Shaobo Han, and Yongliang Tang. "Engineering oxygen vacancies on dendrite-like IrO2 for the oxygen evolution reaction in acidic solution." Sustainable Energy & Fuels 4, no. 5 (2020): 2462–68. http://dx.doi.org/10.1039/d0se00007h.
Full textKim, Jaegyeom, Heewon Ahn, Seung-Joo Kim, Jong-Young Kim, and Jae-Hwan Pee. "Effect of Residual Oxygen Concentration on the Lattice Parameters of Aluminum Nitride Powder Prepared via Carbothermal Reduction Nitridation Reaction." Materials 15, no. 24 (2022): 8926. http://dx.doi.org/10.3390/ma15248926.
Full textLi, Xiang, Hao Wang, Zhiming Cui, et al. "Exceptional oxygen evolution reactivities on CaCoO3 and SrCoO3." Science Advances 5, no. 8 (2019): eaav6262. http://dx.doi.org/10.1126/sciadv.aav6262.
Full textGorlin, Mikaela, Nicole Alessandra Saguì, Daniel Jia Zheng, et al. "Lattice Oxygen Exchange in Transition Metal Oxyhydroxides and Metal Hydroxide Organic Frameworks Elucidated for the Oxygen Evolution Reaction." ECS Meeting Abstracts MA2023-02, no. 42 (2023): 2146. http://dx.doi.org/10.1149/ma2023-02422146mtgabs.
Full textWu, Zhijing, Jianwei Wang, Haiyan Li, Lixin Cao, and Bohua Dong. "Boosting the oxygen evolution reaction performance through defect and lattice distortion engineering." New Journal of Chemistry 46, no. 14 (2022): 6424–32. http://dx.doi.org/10.1039/d2nj00104g.
Full textRadinger, Hannes, Paula Connor, Sven Tengeler, Robert W. Stark, Wolfram Jaegermann, and Bernhard Kaiser. "Importance of Nickel Oxide Lattice Defects for Efficient Oxygen Evolution Reaction." Chemistry of Materials 33, no. 21 (2021): 8259–66. http://dx.doi.org/10.1021/acs.chemmater.1c02406.
Full textMenezes, Prashanth W., Arindam Indra, Vitaly Gutkin, and Matthias Driess. "Boosting electrochemical water oxidation through replacement of Oh Co sites in cobalt oxide spinel with manganese." Chemical Communications 53, no. 57 (2017): 8018–21. http://dx.doi.org/10.1039/c7cc03749j.
Full textXu, Huajie, Yiwei Yang, Xiaoxi Yang, Jing Cao, Weisheng Liu, and Yu Tang. "Stringing MOF-derived nanocages: a strategy for the enhanced oxygen evolution reaction." Journal of Materials Chemistry A 7, no. 14 (2019): 8284–91. http://dx.doi.org/10.1039/c9ta00624a.
Full textHan, Binghong, and Yang Shao-Horn. "(Invited) In-Situ Study of the Activated Lattice Oxygen Redox Reactions in Metal Oxides during Oxygen Evolution Catalysis." ECS Meeting Abstracts MA2018-01, no. 32 (2018): 1935. http://dx.doi.org/10.1149/ma2018-01/32/1935.
Full textSun, Wei, Ya Song, Xue-Qing Gong, Li-mei Cao, and Ji Yang. "An efficiently tuned d-orbital occupation of IrO2 by doping with Cu for enhancing the oxygen evolution reaction activity." Chemical Science 6, no. 8 (2015): 4993–99. http://dx.doi.org/10.1039/c5sc01251a.
Full textZhao, Menghan, Xuerong Zheng, Chengchi Cao, et al. "Lattice oxygen activation in disordered rocksalts for boosting oxygen evolution." Physical Chemistry Chemical Physics, 2023. http://dx.doi.org/10.1039/d2cp05531g.
Full textSuo, Hongli, and Wei-Hong Lai. "Mechanisms of Oxygen Evolution Reaction in Metal Oxides: Adsorbate Evolution Mechanism versus Lattice Oxygen Mechanism." Materials Lab 2 (2023). http://dx.doi.org/10.54227/mlab.20220054.
Full textRen, Xiangrong, Yiyue Zhai, Na Yang, Bolun Wang, and Shengzhong (Frank) Liu. "Lattice Oxygen Redox Mechanisms in the Alkaline Oxygen Evolution Reaction." Advanced Functional Materials, March 25, 2024. http://dx.doi.org/10.1002/adfm.202401610.
Full textWu, Tianze, Jingjie Ge, Qian Wu, et al. "Tailoring atomic chemistry to refine reaction pathway for the most enhancement by magnetization in water oxidation." Proceedings of the National Academy of Sciences 121, no. 19 (2024). http://dx.doi.org/10.1073/pnas.2318652121.
Full textSen, Sujan, and Tapas Kumar Mandal. "Recent Advances in the Understanding of Lattice Oxygen Participation in Oxygen Evolution Reaction Involving Perovskite Oxide Electrocatalysts." ChemCatChem, May 27, 2025. https://doi.org/10.1002/cctc.202500535.
Full textSen, Sujan, Anil Kumar, Ashwini Kumar Sharma, and Tapas Kumar Mandal. "Unraveling eg-band modulation as an alternate strategy to enhance lattice oxygen participation and entice oxygen electrocatalytic bifunctionality via switching of active site." Journal of Materials Chemistry A, 2025. https://doi.org/10.1039/d5ta01076d.
Full textWong, Lydia Helena, Mahmoud G. Ahmed, Ying Fan Tay, et al. "Cation Migration‐Induced Lattice Oxygen Oxidation in Spinel Oxide for Superior Oxygen Evolution Reaction." Angewandte Chemie, November 10, 2024. http://dx.doi.org/10.1002/ange.202416757.
Full textWong, Lydia Helena, Mahmoud G. Ahmed, Ying Fan Tay, et al. "Cation Migration‐Induced Lattice Oxygen Oxidation in Spinel Oxide for Superior Oxygen Evolution Reaction." Angewandte Chemie International Edition, November 10, 2024. http://dx.doi.org/10.1002/anie.202416757.
Full textGuo, Wenxin, Dong-Feng Chai, Jinlong Li, et al. "Strain Engineering for Electrocatalytic Overall Water Splitting." ChemPlusChem, March 9, 2024. http://dx.doi.org/10.1002/cplu.202300605.
Full textLiu, Xiaokang, Zexing He, Muhammad Ajmal, et al. "Recent Advances in the Comprehension and Regulation of Lattice Oxygen Oxidation Mechanism in Oxygen Evolution Reaction." Transactions of Tianjin University, August 16, 2023. http://dx.doi.org/10.1007/s12209-023-00364-z.
Full textZhao, Jia-Wei, Hong Zhang, Chengfei Li, et al. "Key Roles of Surface Fe Sites and Sr Vacancies in Perovskite for Efficient Oxygen Evolution Reaction Participated by Lattice Oxygen Oxidation." Energy & Environmental Science, 2022. http://dx.doi.org/10.1039/d2ee00264g.
Full textHou, Zhiqian, Chenghao Cui, Yanni Li, et al. "Lattice‐Strain Engineering for Heterogeneous Electrocatalytic Oxygen Evolution Reaction." Advanced Materials, January 13, 2023, 2209876. http://dx.doi.org/10.1002/adma.202209876.
Full textPan, Shencheng, Lianjin Wei, Junlong Xie, et al. "Orientation-modulated oxygen evolution reaction in epitaxial SrRuO3 films." Chemical Communications, 2024. http://dx.doi.org/10.1039/d4cc05379f.
Full textAn, Li, Shengjie Zi, Jiamin Zhu, et al. "Surface Cladding Engineering via Oxygen Sulfur Distribution for Stable Electrocatalytic Oxygen Evolution Reaction." Angewandte Chemie, August 26, 2024. http://dx.doi.org/10.1002/ange.202413348.
Full textAn, Li, Shengjie Zi, Jiamin Zhu, et al. "Surface Cladding Engineering via Oxygen Sulfur Distribution for Stable Electrocatalytic Oxygen Evolution Reaction." Angewandte Chemie International Edition, August 26, 2024. http://dx.doi.org/10.1002/anie.202413348.
Full textXie, Yuhua, Fang Luo, and Zehui Yang. "Acidic oxygen evolution reaction via lattice oxygen oxidation mechanism: progress and challenges." Energy Materials 5, no. 3 (2025). https://doi.org/10.20517/energymater.2024.62.
Full textJiao, Xiaorong, Yutian Lei, Yin Liu, et al. "Boosting oxygen evolution via lattice oxygen activation in high-entropy perovskite oxides." Journal of Materials Chemistry A, 2025. https://doi.org/10.1039/d5ta01956g.
Full textRong, Chengli, Xinyi Huang, Hamidreza Arandiyan, Zongping Shao, Yuan Wang, and Yuan Chen. "Advances in Oxygen Evolution Reaction Electrocatalysts via Direct Oxygen–Oxygen Radical Coupling Pathway." Advanced Materials, January 15, 2025. https://doi.org/10.1002/adma.202416362.
Full textHuang, Zhen-Feng, Shibo Xi, Jiajia Song, et al. "Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-24182-w.
Full textChoi, Subin, Se-Jun Kim, Sunghoon Han, et al. "Enhancing Oxygen Evolution Reaction via a Surface Reconstruction-Induced Lattice Oxygen Mechanism." ACS Catalysis, September 30, 2024, 15096–107. http://dx.doi.org/10.1021/acscatal.4c03594.
Full textHu, Yang, Yao Zheng, Jing Jin, et al. "Understanding the sulphur-oxygen exchange process of metal sulphides prior to oxygen evolution reaction." Nature Communications 14, no. 1 (2023). http://dx.doi.org/10.1038/s41467-023-37751-y.
Full textYang, Jie, Shilong Song, Bo Zhang, et al. "Trace Cobalt Inserted Platinum Lattice Gap to Enable Bifunctional Oxygen Electrocatalysis." Journal of Materials Chemistry A, 2025. https://doi.org/10.1039/d4ta07260j.
Full textZhao, Jia-Wei, Kaihang Yue, Hong Zhang, et al. "The formation of unsaturated IrOx in SrIrO3 by cobalt-doping for acidic oxygen evolution reaction." Nature Communications 15, no. 1 (2024). http://dx.doi.org/10.1038/s41467-024-46801-y.
Full textWu, Fengyu, Fenyang Tian, Menggang Li, et al. "Engineering Lattice Oxygen Regeneration of NiFe Layered Double Hydroxide Enhances Oxygen Evolution Catalysis Durability." Angewandte Chemie, October 25, 2024. http://dx.doi.org/10.1002/ange.202413250.
Full textWu, Fengyu, Fenyang Tian, Menggang Li, et al. "Engineering Lattice Oxygen Regeneration of NiFe Layered Double Hydroxide Enhances Oxygen Evolution Catalysis Durability." Angewandte Chemie International Edition, October 25, 2024. http://dx.doi.org/10.1002/anie.202413250.
Full textHan, Jingrui, Haibin Wang, Yuting Wang, et al. "Lattice Oxygen Activation through Deep Oxidation of Co4N by Jahn−Teller‐active Dopants for Improved Electrocatalytic Oxygen Evolution." Angewandte Chemie International Edition, May 27, 2024. http://dx.doi.org/10.1002/anie.202405839.
Full textHan, Jingrui, Haibin Wang, Yuting Wang, et al. "Lattice Oxygen Activation through Deep Oxidation of Co4N by Jahn−Teller‐active Dopants for Improved Electrocatalytic Oxygen Evolution." Angewandte Chemie, May 27, 2024. http://dx.doi.org/10.1002/ange.202405839.
Full textHe, Zuyun, Jun Zhang, Zhiheng Gong, et al. "Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-022-29875-4.
Full textLi, Meng, Wenrou Dong, Xin Zhang, et al. "Tuning Metal/Oxygen Redox Sequence through Constructing [Eu‐O‐Co] Unit for Enhancing Oxygen Evolution." Advanced Functional Materials, July 9, 2025. https://doi.org/10.1002/adfm.202507578.
Full textCao, Jia, Xiongyi Liang, Wei Gao, et al. "Correction: Reversible lattice oxygen participation in Ru1−xO2−x for superior acidic oxygen evolution reaction." Journal of Materials Chemistry A, 2025. https://doi.org/10.1039/d5ta90115d.
Full textYe, Qing, Jialin Wang, Peng Guan, et al. "Rapid synthesis of Fe doped NixP/reduced graphene oxide for enhanced oxygen evolution reaction activity in alkaline freshwater and seawater." Journal of Materials Chemistry A, 2025. https://doi.org/10.1039/d5ta00530b.
Full text