Journal articles on the topic 'Lattice oxygen oxidation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Lattice oxygen oxidation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wu, Jinpeng, Zengqing Zhuo, Xiaohui Rong, et al. "Dissociate lattice oxygen redox reactions from capacity and voltage drops of battery electrodes." Science Advances 6, no. 6 (2020): eaaw3871. http://dx.doi.org/10.1126/sciadv.aaw3871.
Full textТеруков, Е. И., А. В. Марченко, П. П. Серегин, В. С. Киселев та К. Б. Шахович. "Параметры ядерного квадрупольного взаимодействия и пространственное распределение электронных дефектов в решетках YBa-=SUB=-2-=/SUB=-Cu-=SUB=-3-=/SUB=-O-=SUB=-7-=/SUB=- и La-=SUB=-2-x-=/SUB=-Sr-=SUB=-x-=/SUB=-CuO-=SUB=-4-=/SUB=-". Физика твердого тела 60, № 10 (2018): 1866. http://dx.doi.org/10.21883/ftt.2018.10.46510.091.
Full textBosse, Jan, and Andrew Akbashev. "Probing Lattice Oxygen Oxidation in Perovskite Electrocatalysts By Resonant Inelastic X-Ray Scattering." ECS Meeting Abstracts MA2023-01, no. 47 (2023): 2517. http://dx.doi.org/10.1149/ma2023-01472517mtgabs.
Full textLuo, Laitao, Hua Zhong, and Xiaomao Yang. "Oxidative performance and surface properties of Co-containaing mixed oxides having the K2NiF4 structure." Journal of the Serbian Chemical Society 69, no. 10 (2004): 783–90. http://dx.doi.org/10.2298/jsc0410783l.
Full textRotko, Marek, and Karolina Karpińska-Wlizło. "Isotopic Transient Kinetic Analysis of Soot Oxidation on Mn3O4, Mn3O4-CeO2, and CeO2 Catalysts in Tight Contact Conditions." Molecules 30, no. 2 (2025): 343. https://doi.org/10.3390/molecules30020343.
Full textYaremchenko, A. A., V. V. Kharton, S. A. Veniaminov, V. D. Belyaev, V. A. Sobyanin, and F. M. B. Marques. "Methane oxidation by lattice oxygen of CeNbO4+." Catalysis Communications 8, no. 3 (2007): 335–39. http://dx.doi.org/10.1016/j.catcom.2006.07.004.
Full textWen, Xin, and Kui Xie. "Regulating Lattice Oxygen on the Surfaces of Porous Single-Crystalline NiO for Stabilized and Enhanced CO Oxidation." Catalysts 14, no. 2 (2024): 130. http://dx.doi.org/10.3390/catal14020130.
Full textZhang, Ning, and Yang Chai. "Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation." Energy & Environmental Science 14, no. 9 (2021): 4647–71. http://dx.doi.org/10.1039/d1ee01277k.
Full textZheng, Xiang, Chuanhui Zhang, Dongsen Mao, Haifang Mao, and Jun Yu. "Fabrication of MnCoOx composite oxides for catalytic CO oxidation via a solid-phase synthesis: the significant effect of the manganese precursor." New Journal of Chemistry 46, no. 9 (2022): 4343–52. http://dx.doi.org/10.1039/d1nj06026k.
Full textOemar, Usman, Ming Li Ang, Yin Chee Chin, Kus Hidajat, and Sibudjing Kawi. "Role of lattice oxygen in oxidative steam reforming of toluene as a tar model compound over Ni/La0.8Sr0.2AlO3 catalyst." Catalysis Science & Technology 5, no. 7 (2015): 3585–97. http://dx.doi.org/10.1039/c5cy00412h.
Full textZhang, Ningqiang, Lingcong Li, Rui Wu та ін. "Activity enhancement of Pt/MnOx catalyst by novel β-MnO2 for low-temperature CO oxidation: study of the CO–O2 competitive adsorption and active oxygen species". Catalysis Science & Technology 9, № 2 (2019): 347–54. http://dx.doi.org/10.1039/c8cy01879k.
Full textZhu, Guo-min, Zhi-bei Qu, Gui-lin Zhuang, Qin Xie, Qiang-qiang Meng, and Jian-guo Wang. "CO Oxidation by Lattice Oxygen on V2O5 Nanotubes." Journal of Physical Chemistry C 115, no. 30 (2011): 14806–11. http://dx.doi.org/10.1021/jp2026175.
Full textHatmanto, Adhi Dwi, and Koji Kita. "Relaxation of the Distorted Lattice of 4H-SiC (0001) Surface by Post-Oxidation Annealing." Solid State Phenomena 345 (July 28, 2023): 131–36. http://dx.doi.org/10.4028/p-n0q5nl.
Full textWang, Xiang, Congcong Xing, Zhifu Liang, et al. "Activating the lattice oxygen oxidation mechanism in amorphous molybdenum cobalt oxide nanosheets for water oxidation." Journal of Materials Chemistry A 10, no. 7 (2022): 3659–66. http://dx.doi.org/10.1039/d1ta09657e.
Full textZhang, Hao, Tan Meng, Min Zhang, et al. "Understanding the Role of Active Lattice Oxygen in CO Oxidation Catalyzed by Copper-Doped Mn2O3@MnO2." Molecules 30, no. 4 (2025): 865. https://doi.org/10.3390/molecules30040865.
Full textFu, Zhu, Ping Qi, Huimin Liu, Qijian Zhang, Yonghua Zhao, and Xiaoqian Feng. "Influence of Oxidative Properties of CexZr1−xO2 Catalyst on Partial Oxidation of Dimethyl Ether." Catalysts 12, no. 12 (2022): 1536. http://dx.doi.org/10.3390/catal12121536.
Full textTokarz-Sobieraj, Renata, Robert Grybos, Małgorzata Witko, and Klaus Hermann. "Oxygen Sites at Molybdena and Vanadia Surfaces: Energetics of the Re-Oxidation Process." Collection of Czechoslovak Chemical Communications 69, no. 1 (2004): 121–40. http://dx.doi.org/10.1135/cccc20040121.
Full textZhao, Jia-Wei, Cheng-Fei Li, Zi-Xiao Shi, Jie-Lun Guan, and Gao-Ren Li. "Boosting Lattice Oxygen Oxidation of Perovskite to Efficiently Catalyze Oxygen Evolution Reaction by FeOOH Decoration." Research 2020 (July 10, 2020): 1–15. http://dx.doi.org/10.34133/2020/6961578.
Full textDong, Leyuan, Keyu Jiang, Qi Shen, Lijuan Xie, Jian Mei, and Shijian Yang. "Catalytic Oxidation of Chlorobenzene over HSiW/CeO2 as a Co-Benefit of NOx Reduction: Remarkable Inhibition of Chlorobenzene Oxidation by NH3." Materials 17, no. 4 (2024): 828. http://dx.doi.org/10.3390/ma17040828.
Full textDjinović, Petar, Janez Zavašnik, Janvit Teržan, and Ivan Jerman. "Role of CO2 During Oxidative Dehydrogenation of Propane Over Bulk and Activated-Carbon Supported Cerium and Vanadium Based Catalysts." Catalysis Letters 151, no. 10 (2021): 2816–32. http://dx.doi.org/10.1007/s10562-020-03519-y.
Full textAkbashev, Andrew. "(Invited) Probing Oxygen Intercalation, Oxidation and Chemo-Mechanical Coupling in OER Electrocatalysts." ECS Meeting Abstracts MA2024-01, no. 34 (2024): 1667. http://dx.doi.org/10.1149/ma2024-01341667mtgabs.
Full textChen, Yimeng, Shunzheng Zhao, Fengyu Gao, et al. "The Promoting Effect of Metal Vacancy on CoAl Hydrotalcite-Derived Oxides for the Catalytic Oxidation of Formaldehyde." Processes 11, no. 7 (2023): 2154. http://dx.doi.org/10.3390/pr11072154.
Full textCui, Yan, Zequan Zeng, Yaqin Hou, Shuang Ma, Wenzhong Shen, and Zhanggen Huang. "A Low-Noble-Metal Ru@CoMn2O4 Spinel Catalyst for the Efficient Oxidation of Propane." Molecules 29, no. 10 (2024): 2255. http://dx.doi.org/10.3390/molecules29102255.
Full textTang, Jiangyu, Xiao Wang, Yunfa Wang, et al. "Active non-bonding oxygen mediate lattice oxygen oxidation on NiFe2O4 achieving efficient and stable water oxidation." Chinese Journal of Catalysis 72 (May 2025): 164–75. https://doi.org/10.1016/s1872-2067(24)60276-7.
Full textLiang, Qinghua, and Dan Li. "Activating localized lattice oxygen for durable acidic water oxidation." Chem Catalysis 1, no. 3 (2021): 506–8. http://dx.doi.org/10.1016/j.checat.2021.07.011.
Full textMuggli, Darrin S., and John L. Falconer. "Role of Lattice Oxygen in Photocatalytic Oxidation on TiO2." Journal of Catalysis 191, no. 2 (2000): 318–25. http://dx.doi.org/10.1006/jcat.2000.2821.
Full textDing, Qian, Yang Liu, Tao Chen, et al. "Unravelling the water oxidation mechanism on NaTaO3-based photocatalysts." Journal of Materials Chemistry A 8, no. 14 (2020): 6812–21. http://dx.doi.org/10.1039/c9ta14235e.
Full textLin, Fan, Kenneth Rappé, Libor Kovarik, et al. "Effects of high-temperature CeO2 calcination on the activity of Pt/CeO2 catalysts for oxidation of unburned hydrocarbon fuels." Catalysis Science & Technology 12, no. 8 (2022): 2462–70. http://dx.doi.org/10.1039/d2cy00030j.
Full textJo, Seunghwan, Ki Hoon Shin, John Hong, and Jung Inn Sohn. "Lattice Oxygen-Catalyzed Bismuth-Cerium Oxyhydroxide Anode for Anion Exchange Membrane Water Electrolyzers." ECS Meeting Abstracts MA2024-02, no. 24 (2024): 4918. https://doi.org/10.1149/ma2024-02244918mtgabs.
Full textBae, Junemin, Jiwhan Kim, Hojin Jeong, and Hyunjoo Lee. "CO oxidation on SnO2 surfaces enhanced by metal doping." Catalysis Science & Technology 8, no. 3 (2018): 782–89. http://dx.doi.org/10.1039/c7cy02108a.
Full textTamai, Kazuki, Saburo Hosokawa, Kazuo Kato, Hiroyuki Asakura, Kentaro Teramura та Tsunehiro Tanaka. "Low-temperature NO oxidation using lattice oxygen in Fe-site substituted SrFeO3−δ". Physical Chemistry Chemical Physics 22, № 42 (2020): 24181–90. http://dx.doi.org/10.1039/d0cp03726e.
Full textZhang, Weiyi, and Changxing Hu. "Effect of Temperature and SO2 on Mercury Removal Performance on a Ce-Cu/Al Catalyst in Low-Temperature Flue Gas." Journal of Physics: Conference Series 2418, no. 1 (2023): 012016. http://dx.doi.org/10.1088/1742-6596/2418/1/012016.
Full textLv, Changpeng, Dan Du, Chao Wang, et al. "The Flower-like Co3O4 Hierarchical Microspheres for Methane Catalytic Oxidation." Inorganics 10, no. 4 (2022): 49. http://dx.doi.org/10.3390/inorganics10040049.
Full textTemprano, Israel, Wesley M. Dose, Michael F. L. De Volder, and Clare P. Grey. "Solvent-Driven Degradation of Ni-Rich Cathodes Probed by Operando Gas Analysis." ECS Meeting Abstracts MA2023-02, no. 2 (2023): 348. http://dx.doi.org/10.1149/ma2023-022348mtgabs.
Full textRostom, Samira, and Hugo de Lasa. "Propane Oxidative Dehydrogenation on Vanadium-Based Catalysts under Oxygen-Free Atmospheres." Catalysts 10, no. 4 (2020): 418. http://dx.doi.org/10.3390/catal10040418.
Full textPenkala, Bartosz, Daniel Aubert, Helena Kaper, Caroline Tardivat, Kazimierz Conder, and Werner Paulus. "The role of lattice oxygen in CO oxidation over Ce18O2-based catalysts revealed under operando conditions." Catalysis Science & Technology 5, no. 10 (2015): 4839–48. http://dx.doi.org/10.1039/c5cy00842e.
Full textBeppu, Kosuke, Saburo Hosokawa, Hiroyuki Asakura, Kentaro Teramura та Tsunehiro Tanaka. "Role of lattice oxygen and oxygen vacancy sites in platinum group metal catalysts supported on Sr3Fe2O7−δ for NO-selective reduction". Catalysis Science & Technology 8, № 1 (2018): 147–53. http://dx.doi.org/10.1039/c7cy01861d.
Full textStout, R. B., E. J. Kansa, and A. M. Wijesinghe. "Kinematics and Thermodynamics Across a Propagating Non-Stoichiometric Oxidation Phase Front in Spent Fuel Grains." Applied Mechanics Reviews 47, no. 1S (1994): S95—S111. http://dx.doi.org/10.1115/1.3122826.
Full textCao, Xuesong, Chenxi Zhang, Zehua Wang, Wen Liu, and Xiaomin Sun. "Surface reduction properties of ceria–zirconia solid solutions: a first-principles study." RSC Advances 10, no. 8 (2020): 4664–71. http://dx.doi.org/10.1039/c9ra09550k.
Full textLi, Long, and Judith C. Yang. "Formation of Nanosized Metallic Ag Grains by Oxidation of Ag Single Crystals with Hyperthermal Atomic Oxygen." MRS Proceedings 788 (2003). http://dx.doi.org/10.1557/proc-788-l1.3.
Full textZeng, Jia, Hongmei Xie, Zhao Liu, Xuecheng Liu, Guilin Zhou, and Yi Jiang. "Oxygen vacancy induced MnO2 catalysts for efficient toluene catalytic oxidation." Catalysis Science & Technology, 2021. http://dx.doi.org/10.1039/d1cy01274f.
Full textWang, Xianhui, Chunlei Pei, Zhi-Jian Zhao, et al. "Coupling acid catalysis and selective oxidation over MoO3-Fe2O3 for chemical looping oxidative dehydrogenation of propane." Nature Communications 14, no. 1 (2023). http://dx.doi.org/10.1038/s41467-023-37818-w.
Full textZhao, Menghan, Xuerong Zheng, Chengchi Cao, et al. "Lattice oxygen activation in disordered rocksalts for boosting oxygen evolution." Physical Chemistry Chemical Physics, 2023. http://dx.doi.org/10.1039/d2cp05531g.
Full textWong, Lydia Helena, Mahmoud G. Ahmed, Ying Fan Tay, et al. "Cation Migration‐Induced Lattice Oxygen Oxidation in Spinel Oxide for Superior Oxygen Evolution Reaction." Angewandte Chemie, November 10, 2024. http://dx.doi.org/10.1002/ange.202416757.
Full textWong, Lydia Helena, Mahmoud G. Ahmed, Ying Fan Tay, et al. "Cation Migration‐Induced Lattice Oxygen Oxidation in Spinel Oxide for Superior Oxygen Evolution Reaction." Angewandte Chemie International Edition, November 10, 2024. http://dx.doi.org/10.1002/anie.202416757.
Full textKubo, Hitoshi, Yusuke Ohshima, Shunsuke Kato, et al. "Effect of the Supported Metal Species on Soot Oxidation over PGM/CeO2–ZrO2." Bulletin of the Chemical Society of Japan, September 11, 2024. http://dx.doi.org/10.1093/bulcsj/uoae092.
Full textSeo, Boseok, Jimin Lyu, Namgyu Son, et al. "Enhanced Oxygen Transfer Rate of Chemical Looping Combustion through Lattice Expansion on CuMn2O4 Oxygen Carrier." Sustainable Energy & Fuels, 2023. http://dx.doi.org/10.1039/d3se01159c.
Full textWei, Yicheng, Yang Hu, Pengfei Da, Zheng Weng, Pinxian Xi, and Chun-Hua Yan. "Triggered lattice-oxygen oxidation with active-site generation and self-termination of surface reconstruction during water oxidation." Proceedings of the National Academy of Sciences 120, no. 50 (2023). http://dx.doi.org/10.1073/pnas.2312224120.
Full textAmbeth, Prabhakaran Vanaraja, Mohammed Hassan Ahmed, and Muxina Konarova. "Enhanced Oxygen Evolution in Perovskite Materials for Syngas Production and Water Splitting in Chemical Looping." ChemCatChem, February 18, 2025. https://doi.org/10.1002/cctc.202401980.
Full textPing, Xinyu, Yongduo Liu, Lixia Zheng, et al. "Locking the lattice oxygen in RuO2 to stabilize highly active Ru sites in acidic water oxidation." Nature Communications 15, no. 1 (2024). http://dx.doi.org/10.1038/s41467-024-46815-6.
Full text