Academic literature on the topic 'Lattice structures'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lattice structures.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lattice structures"
Pan, Chen, Yafeng Han, and Jiping Lu. "Design and Optimization of Lattice Structures: A Review." Applied Sciences 10, no. 18 (September 13, 2020): 6374. http://dx.doi.org/10.3390/app10186374.
Full textHorváth, Eszter K., Sándor Radeleczki, Branimir Šešelja, and Andreja Tepavčević. "A Note on Cuts of Lattice-Valued Functions and Concept Lattices." Mathematica Slovaca 73, no. 3 (June 1, 2023): 583–94. http://dx.doi.org/10.1515/ms-2023-0043.
Full textMaskery, Ian, Alexandra Hussey, Ajit Panesar, Adedeji Aremu, Christopher Tuck, Ian Ashcroft, and Richard Hague. "An investigation into reinforced and functionally graded lattice structures." Journal of Cellular Plastics 53, no. 2 (July 28, 2016): 151–65. http://dx.doi.org/10.1177/0021955x16639035.
Full textGuerra Silva, Rafael, María Josefina Torres, Jorge Zahr Viñuela, and Arístides González Zamora. "Manufacturing and Characterization of 3D Miniature Polymer Lattice Structures Using Fused Filament Fabrication." Polymers 13, no. 4 (February 20, 2021): 635. http://dx.doi.org/10.3390/polym13040635.
Full textAbusabir, Ahmed, Muhammad A. Khan, Muhammad Asif, and Kamran A. Khan. "Effect of Architected Structural Members on the Viscoelastic Response of 3D Printed Simple Cubic Lattice Structures." Polymers 14, no. 3 (February 5, 2022): 618. http://dx.doi.org/10.3390/polym14030618.
Full textMajari, Parisa, Daniel Olvera-Trejo, Jorge A. Estrada-Díaz, Alex Elías-Zúñiga, Oscar Martinez-Romero, Claudia A. Ramírez-Herrera, and Imperio Anel Perales-Martínez. "Enhanced Lightweight Structures Through Brachistochrone-Inspired Lattice Design." Polymers 17, no. 5 (February 28, 2025): 654. https://doi.org/10.3390/polym17050654.
Full textEcheta, Ifeanyichukwu, Xiaobing Feng, Ben Dutton, Richard Leach, and Samanta Piano. "Review of defects in lattice structures manufactured by powder bed fusion." International Journal of Advanced Manufacturing Technology 106, no. 5-6 (December 30, 2019): 2649–68. http://dx.doi.org/10.1007/s00170-019-04753-4.
Full textLiu, Tinghao, and Guangbo Hao. "Design of Deployable Structures by Using Bistable Compliant Mechanisms." Micromachines 13, no. 5 (April 19, 2022): 651. http://dx.doi.org/10.3390/mi13050651.
Full textGuo, Zhengjie, Yuting Ma, Tayyeb Ali, Yi Yang, Juan Hou, Shujun Li, and Hao Wang. "Enhanced Compressive Properties of Additively Manufactured Ti-6Al-4V Gradient Lattice Structures." Metals 15, no. 3 (February 21, 2025): 230. https://doi.org/10.3390/met15030230.
Full textLan, Tian, Chenxi Peng, Kate Fox, Truong Do, and Phuong Tran. "Triply periodic minimal surfaces lattice structures: Functional graded and hybrid designs for engineering applications." Materials Science in Additive Manufacturing 2, no. 3 (September 27, 2023): 1753. http://dx.doi.org/10.36922/msam.1753.
Full textDissertations / Theses on the topic "Lattice structures"
Hou, An. "Strength of composite lattice structures." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/12475.
Full textObiedat, Mohammad. "Incrementally Sorted Lattice Data Structures." Thesis, The George Washington University, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3732474.
Full textData structures are vital entities that strongly impact the efficiency of several software applications. Compactness, predictable memory access patterns, and good temporal and spacial locality of the structure's operations are increasingly becoming essential factors in the selection of a data structure for a specific application. In general, the less data we store and move the better for efficiency and power consumption, especially in infrastructure software and applications for hand-held devices like smartphones. In this dissertation, we extensively study a data structure named lattice data structure (LDS) that is as compact and suitable for memory hierarchies as the array, yet with a rich structure that enables devising procedures with better time bounds.
To achieve performance similar to the performance of the optimal O(log(N)) time complexity of the searching operations of other structures, we provide a hybrid searching algorithm that can be implemented by searching the lattice using the basic searching algorithm when the degree of the sortedness of the lattice is less than or equal to 0.9h, and the jump searching algorithm when the degree of the sortedness of the lattice is greater than 0.9h. A sorting procedure that can be used, during the system idle time, to incrementally increase the degree of sortedness of the lattice is given. We also provide randomized and parallel searching algorithms that can be used instead of the usual jump-and-walk searching algorithms.
A lattice can be represented by a one-dimensional array, where each cell is represented by one array element. The worst case time complexity of the basic LDS operations and the average time complexity of some of the order-statistic operations are better than the corresponding time complexities of most of other data structures operations. This makes the LDS a good choice for memory-constrained systems, for systems where power consumption is a critical issue, and for real-time systems. A potential application of the LDS is to use it as an index structure for in-memory databases.
Kouach, Mona. "Methods for modelling lattice structures." Thesis, KTH, Hållfasthetslära (Avd.), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260498.
Full textÖkad implementering av gitterstrukturer i komponenter är ett resultat av utvecklingen inom additiv tillverkning. Metoden öppnar upp för tillverkning av komplexa strukturer med färre delmoment. Dock så uppkommer det svårigheter vid simulering av dessa komplexa strukturer då beräkningar snabbt tyngs ner med ökad komplexitet. Följande examensarbete har utförts hos avdelningen Strukturanalys, på SAAB i Järfälla, för att de ska kunna möta upp det framtida behovet av beräkningar på additivt tillverkade gitterstrukturer. I det här arbetet presenteras ett tillvägagångsätt för modellering av gitterstrukturer med hjälp av represantiva volymselement. Styvhetsmatriser har räknats fram, för en vald gitterkonfiguration, som sedan viktats mot tre snarlika representativa volymselement. En jämförelseanalys mellan de olika styvhetsmatriserna har sedan gjorts på en större och solid modell för att se hur väl metoderna förutsett deformationen av en gitterstruktur i samma storlek. Resultaten har visat att samtliga metoder är bra approximationer med tämligen små skillnader från randeffekterna. Vid jämförelseanalysen simulerades gitterstrukturen bäst med två av de tre metoder. En av slutsatserna är att det är viktigt att förstå inverkan av randvillkoren hos gitterstrukturer innan implementering görs med det tillvägagångssätt som presenterats i det här examensarbetet.
Pugh, David John Rhydwyn. "Topological structures in lattice gauge theory." Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279896.
Full textPapachristou, Petros G. "Probabilistic relaxation for square lattice structures." Thesis, University of Surrey, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241395.
Full textAGUILERA, JEAN RODRIGO FERREIRA. "LIGHT LATTICE STRUCTURES UNDER WIND ACTION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10538@1.
Full textNo projeto de estruturas treliçadas esbeltas, um ponto relativamente em aberto é quanto à resposta dinâmica dessas torres sob ação do vento. Já foram observadas várias ocorrências de queda de torres por tais efeitos no Brasil e ultimamente, essas incidências vêm aumentando, trazendo diversos transtornos e prejuízos significativos à sociedade e às empresas concessionárias. Nesse contexto, brotam dois aspectos centrais: a modelagem da estrutura e a discretização da ação do vento. A montagem desses dois cenários é feita com base em um modelo numérico, no SAP2000, de uma torre de 73,75 m de altura da linha de transmissão LT - 103, na Amazônia, e uma torre de TV com 192 m de altura, localizada em Brasília-DF, ambas no Brasil. Para avaliação da excitação do vento, é utilizada a norma brasileira NBR 6123. Em estudo preliminar, propõe-se uma forma de representação simplificada das forças do vento sobre a torre, de modo a serem utilizadas resultantes por módulos, convenientemente distribuídas por seus nós principais, visando-se quer a resposta estática, quer a dinâmica. A torre de TV é ensaiada sob a ação de pulsos isolados do vento de projeto e por sucessões diversas desses pulsos com o intuito de simular rajadas de vento. Investiga-se também, para a ação de ventos normalizados extremos, a resposta linear e não-linear P-Delta do sistema. Em consequência, identificam-se pontos de insuficiência estrutural e, para as ações extremas, ensaiam-se recursos mecânicos para controle dos deslocamentos e esforços máximos produzidos pela ação estática e dinâmica do vento.
The dynamic response of slender latticed tower structures under wind excitation is still an open point in the design of such systems. In Brazil, an expressive number of accidents have been registered, in the last few decades, and a large number of material and financial losses have been equally reported, for both people and industrial plant owners. In the structural analysis scenario, two central points dominate the structural engineer concerns: the modeling of the structure and of the wind action. Two tower models are used, a 73,75m high transmission line trussed structure, LT 103, settled in the Brazilian Amazon Basin and a 193m tall trussed TV tower, built in Brasilia-DF. The wind action on the tower members is computed according to the brazilian recommendation, NBR- 6123. In a preliminary study, a simplified procedure is proposed to evaluate the wind forces on the LT-103 tower sections and to conveniently distribute them on the main tower model nodes (joints). The TV Tower is evaluated under the static and dynamic action of the wind forces, either by isolated pulses or by a train of them to model a wind gust. The tower response is computed under a linear and non-linear P-Delta behavior; some faulting spots are identified in the response reports and a combined vibration control solution is proposed incorporating steel tendons conjugated with multiple tuned mass absorbers. A comparison is also made with the NBR 15307 recommendation and a couple of comments are addressed to those who may intend to apply this regulation to investigate the behavior of slender trussed tower structures.
Leung, Anthony Chi Hin. "Actuation properties of kagome lattice structures." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613328.
Full textHammetter, Christopher Ian. "Designing pyramidal lattice structures for energy absorption." Thesis, University of California, Santa Barbara, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3602080.
Full textApplications for energy absorption materials range from athletic equipment, to vehicle crumple zones, to blast protection for military vehicles and personnel. Many energy absorption structures employ stochastic foams because of their plateau-like stress-strain response that allows for the absorption of large amounts of energy at relatively low stresses over large compressive strains. Periodic lattice structures, when properly designed, provide the same capabilities as stochastic systems, but with a more tailorable response that provides potential for improved specific strength and energy absorption. The present dissertation provides an in-depth study of the pyramidal lattice: one particular periodic structure that strikes a good compromise between performance and manufacturability. Through finite element and analytical modeling, this study identifies key parameters of the geometry, boundary conditions, and parent material properties that determine the compressive stress-strain response of the structure. In conjunction with experimental investigations, these models are used to understand and determine the potential for improving the response of the as-manufactured polymeric pyramidal lattice structures through additional heat treatment and filling the lattice void-space with stochastic foam. Finally, additional models are developed to understand and predict the structural rate effects that arise from inertial stabilization of strut buckling during dynamic loading. Particular emphasis is given to the effects of yield strain and density of the parent material on failure modes and dynamic response. In addition to providing a strong basis for the design of pyramidal lattice materials, this work provides useful insight into the design of energy absorption materials in general.
Novak, Jurica. "Simulated mesoscopic structures in a ferroelastic lattice." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621535.
Full textCraig, Adam Patrick. "Novel structures for lattice-mismatched infrared photodetectors." Thesis, Lancaster University, 2016. http://eprints.lancs.ac.uk/82854/.
Full textBooks on the topic "Lattice structures"
Zhu, K. Nonlinear dynamic analysis of lattice structures. Brisbane: Department of Civil Engineering, University of Queensland, 1992.
Find full textZhu, K. Nonlinear dynamic analysis of lattice structures. Brisbane: Universityof Queensland, Dept. of Civil Engineering, 1990.
Find full textBeckh, Matthias. Hyperbolic structures. Chichester, West Sussex, United Kingdom: John Wiley & Sons Inc., 2014.
Find full textNoor, Ahmed Khairy. Continuum modeling of large lattice structures: Status and projections. Hampton, Va: Langley Research Center, 1988.
Find full textM, Mikulas Martin, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Continuum modeling of large lattice structures: Status and projections. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1988.
Find full textWest, Harry H. Analysis of structures: An integration of classical and modern methods. 2nd ed. New York: Wiley, 1989.
Find full textNATO Advanced Research Workshop on Nonlinear Coherent Structures in Physics and Biology (1993 Bayreuth, Germany). Nonlinear coherent structures in physics and biology. New York: Plenum Press, 1994.
Find full textKarl-Heinz, Spatschek, Mertens Franz-Georg, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Research Workshop on Nonlinear Coherent Structures in Physics and Biology (8th : 1993 : Bayreuth, Germany), eds. Nonlinear coherent structures in physics and biology. New York: Plenum Press, 1994.
Find full textCohen, K. Passive damping augmentation of flexible beam-like lattice trusses for large space structures. Haifa, Israel: Technion Israel Institute of Technology, Faculty of Aerospace Engineering, 1990.
Find full textBook chapters on the topic "Lattice structures"
Loeb, Arthur L. "Lattices and Lattice Complexes." In Space Structures, 123–25. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0437-4_15.
Full textNakazawa, Naoya, and Hiroshi Nakazawa. "Lattice Structures." In Random Number Generators on Computers, 33–44. New York: Jenny Stanford Publishing, 2024. http://dx.doi.org/10.1201/9781003410607-4.
Full textNorris, Andrew N. "Pentamode Lattice Structures." In Dynamics of Lattice Materials, 179–98. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118729588.ch8.
Full textCioranescu, Doina, and Jeannine Saint Jean Paulin. "Lattice-Type Structures." In Homogenization of Reticulated Structures, 71–142. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-2158-6_2.
Full textAl-Rabadi, Anas N. "Reversible Lattice Structures." In Reversible Logic Synthesis, 150–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18853-4_6.
Full textChallapalli, Adithya, and Guoqiang Li. "Structural Optimization of Lattice Structures." In Artificial Intelligence Assisted Structural Optimization, 84–112. Boca Raton: CRC Press, 2025. https://doi.org/10.1201/9781003400165-5.
Full textRedfield, R. H. "Surveying Lattice-Ordered Fields." In Ordered Algebraic Structures, 123–53. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3627-4_6.
Full textDarnel, Michael R. "Totally Ordered Structures." In Theory of Lattice-Ordered Groups, 137–62. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003067337-5.
Full textPalm, Günther. "Order- and Lattice-Structures." In Novelty, Information and Surprise, 207–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29075-6_15.
Full textPalm, Günther. "Order- and Lattice-Structures." In Information Science and Statistics, 235–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-65875-8_16.
Full textConference papers on the topic "Lattice structures"
Fry, A. T., L. E. Crocker, P. Woolliams, M. Poole, A. Koko, and C. Breheny. "Tensile Property Measurement of AlSi10Mg Lattice Structures - From Single Strut to Lattice Networks." In AM-EPRI 2024, 207–18. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.am-epri-2024p0207.
Full textChen, Jiangce, Martha Baldwin, Sneha Narra, and Christopher McComb. "Multi-Lattice Topology Optimization With Lattice Representation Learned by Generative Models." In ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/detc2024-145592.
Full textSundararaman, Venkatesh, Matthew P. O'Donnell, Isaac V. Chenchiah, and Paul M. Weaver. "Topology Morphing Lattice Structures." In ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/smasis2021-67531.
Full textAyaz Uddin, Mohammed, Imad Barsoum, Shanmugam Kumar, and Andreas Schiffer. "Enhancing Energy Absorption Capacity of Pyramidal Lattice Structures via Geometrical Tailoring and 3D Printing." In ASME 2024 Aerospace Structures, Structural Dynamics, and Materials Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/ssdm2024-121512.
Full textTang, Tsz Ling Elaine, Yan Liu, Da Lu, Erhan Batuhan Arisoy, and Suraj Musuvathy. "Lattice Structure Design Advisor for Additive Manufacturing Using Gaussian Process." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67282.
Full textMcConaha, Matthew, and Sam Anand. "Design of Stochastic Lattice Structures for Additive Manufacturing." In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8439.
Full textRadics, Janos P., and Levente Szeles. "Investigating The Load-Bearing Capacity Of Additively Manufactured Lattice Structures." In 35th ECMS International Conference on Modelling and Simulation. ECMS, 2021. http://dx.doi.org/10.7148/2021-0133.
Full textLeung, Anthony, Digby Symons, and Simon Guest. "Actuation of Kagome Lattice Structures." In 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-1525.
Full textVenugopal, Vysakh, Matthew McConaha, and Sam Anand. "Topology Optimization for Multi-Material Lattice Structures With Tailorable Material Properties for Additive Manufacturing." In ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2989.
Full textAbdelaal, Ahmed F., Khaled Al-Athel, Abba Abubakar, Usman Ali, and Syed Sohail Akhtar. "Computational Analysis of the Compressive Behavior of TPMS Graded Lattice Structures Versus Primitive TPM Lattice Structures Produced by Additive Manufacturing." In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-113259.
Full textReports on the topic "Lattice structures"
Fry, A. T., L. E. Crocker, M. J. Lodeiro, M. Poole, P. Woolliams, A. Koko, N. Leung, D. England, and C. Breheny. Tensile property measurement of lattice structures. National Physical Laboratory, July 2023. http://dx.doi.org/10.47120/npl.mat119.
Full textWilliams, James H., and Jr. Wave Propagation and Dynamics of Lattice Structures. Fort Belvoir, VA: Defense Technical Information Center, October 1987. http://dx.doi.org/10.21236/ada190037.
Full textWilliams, James H., and Jr. Wave Propagation and Dynamics of Lattice Structures. Fort Belvoir, VA: Defense Technical Information Center, October 1987. http://dx.doi.org/10.21236/ada190611.
Full textWilliams, James H., and Jr. Wave Propagation and Dynamics of Lattice Structures. Fort Belvoir, VA: Defense Technical Information Center, October 1985. http://dx.doi.org/10.21236/ada170316.
Full textSkowronski, Marek, and D. W. Greve. Growth of Lattice Matched Nitride Alloys and Structures. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada354115.
Full textHughes, Nathan. Computed Tomography (CT) Analysis of 3D Printed Lattice Structures. Office of Scientific and Technical Information (OSTI), May 2023. http://dx.doi.org/10.2172/1975633.
Full textBasseville, Michele, Albert Benveniste, and Alan S. Willsky. Multiscale Autoregressive Processes. Part 2. Lattice Structures for Whitening and Modeling. Fort Belvoir, VA: Defense Technical Information Center, August 1992. http://dx.doi.org/10.21236/ada264600.
Full textPepi, Marc, Jennifer Sietins, Paul Moy, Vincent Wu, Ray Wildman, Rich Martukanitz, Corey Dickman, et al. Design, Inspection, and Testing of As-Built and Infiltrated Additively Manufactured Aluminum Lattice Truss Structures. Aberdeen Proving Ground, MD: DEVCOM Army Research Laboratory, August 2022. http://dx.doi.org/10.21236/ad1177016.
Full textDervenagas, P. Neutron scattering studies of RENi{sub 2}B{sub 2}C: Magnetic structures and lattice dynamics. Office of Scientific and Technical Information (OSTI), May 1996. http://dx.doi.org/10.2172/249272.
Full textWolf, R. J., and K. A. Mansour. Molecular modeling of metal hydrides: 2. Calculation of lattice defect structures and energies utilizing the Embedded Atom Method. Office of Scientific and Technical Information (OSTI), December 1990. http://dx.doi.org/10.2172/6335193.
Full text