Academic literature on the topic 'Lax-Friedrichs method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lax-Friedrichs method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lax-Friedrichs method"
Shampine, L. F. "Two-step Lax–Friedrichs method." Applied Mathematics Letters 18, no. 10 (2005): 1134–36. http://dx.doi.org/10.1016/j.aml.2004.11.007.
Full textYu, Simin. "A survey of numerical schemes for transportation equation." E3S Web of Conferences 308 (2021): 01020. http://dx.doi.org/10.1051/e3sconf/202130801020.
Full textBreuß, Michael. "The correct use of the Lax–Friedrichs method." ESAIM: Mathematical Modelling and Numerical Analysis 38, no. 3 (2004): 519–40. http://dx.doi.org/10.1051/m2an:2004027.
Full textSharma, Deepika, and Kavita Goyal. "Wavelet optimized upwind conservative method for traffic flow problems." International Journal of Modern Physics C 31, no. 06 (2020): 2050086. http://dx.doi.org/10.1142/s0129183120500862.
Full textКУЛИКОВ, И. М., та Д. А. КАРАВАЕВ. "ИСПОЛЬЗОВАНИЕ СХЕМЫ ЛАКСА-ФРИДРИХСА С МАЛОЙ ДИССИПАЦИЕЙ ДЛЯ МОДЕЛИРОВАНИЯ РЕЛЯТИВИСТСКИХ ТЕЧЕНИЙ ГАЗА". Сибирский журнал вычислительной математики 26, № 4 (2023): 389–400. http://dx.doi.org/10.15372/sjnm20230404.
Full textChatterjee, N., and U. S. Fjordholm. "A convergent finite volume method for the Kuramoto equation and related nonlocal conservation laws." IMA Journal of Numerical Analysis 40, no. 1 (2018): 405–21. http://dx.doi.org/10.1093/imanum/dry074.
Full textAraujo, Isamara L. N., Panters Rodríguez-Bermúdez, and Yoisell Rodríguez-Núñez. "Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Media." TEMA (São Carlos) 21, no. 1 (2020): 21. http://dx.doi.org/10.5540/tema.2020.021.01.21.
Full textYu, Kangning, Wenxia Xu, Jibin Yang, Shuo Li, and Guodong Li. "The Limits of Riemann Solutions for Chaplygin Gas Magnetohydrodynamics Euler Equations with Active Terms." Symmetry 17, no. 1 (2025): 77. https://doi.org/10.3390/sym17010077.
Full textWang, Min, and Xiaohua Zhang. "A High–Order WENO Scheme Based on Different Numerical Fluxes for the Savage–Hutter Equations." Mathematics 10, no. 9 (2022): 1482. http://dx.doi.org/10.3390/math10091482.
Full textAli, Ali Hasan, Ahmed Shawki Jaber, Mustafa T. Yaseen, Mohammed Rasheed, Omer Bazighifan, and Taher A. Nofal. "A Comparison of Finite Difference and Finite Volume Methods with Numerical Simulations: Burgers Equation Model." Complexity 2022 (June 27, 2022): 1–9. http://dx.doi.org/10.1155/2022/9367638.
Full textDissertations / Theses on the topic "Lax-Friedrichs method"
Chen, Weitao. "Fast Sweeping Methods for Steady State Hyperbolic Conservation Problems and Numerical Applications for Shape Optimization and Computational Cell Biology." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366279632.
Full textROSSI, ELENA. "Balance Laws: Non Local Mixed Systems and IBVPs." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/103090.
Full textBook chapters on the topic "Lax-Friedrichs method"
Arminjon, P., A. St-Cyr, and A. Madrane. "Non-oscillatory Lax-Friedrichs Type Central Finite Volume Methods for 3-D Flows on Unstructured Tetrahedral Grids." In Hyperbolic Problems: Theory, Numerics, Applications. Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8370-2_7.
Full text"5. Convergence of Lax–Friedrichs Scheme, Godunov Scheme and Glimm Scheme." In Vanishing Viscosity Method. De Gruyter, 2016. http://dx.doi.org/10.1515/9783110494273-005.
Full textSong, Lunji. "A Fully Discrete SIPG Method for Solving Two Classes of Vortex Dominated Flows." In Vortex Dynamics Theories and Applications. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94316.
Full textBaccouch, Mahboub. "Numerical Methods for the Viscid and Inviscid Burgers Equations." In Computational Fluid Dynamics - Analysis, Simulations, and Applications [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1007351.
Full textConference papers on the topic "Lax-Friedrichs method"
Gashi, Ilir, Stefano Maci, and Matteo Albani. "Analysis of GRIN Lens Antennas through the Lax-Friedrichs Sweeping Method." In 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI). IEEE, 2024. http://dx.doi.org/10.1109/ap-s/inc-usnc-ursi52054.2024.10686893.
Full textYulianti, Kartika, Rini Marwati, and Suci Permatahati. "A Modified Lax-Friedrichs Method for the Shallow Water Equations." In Proceedings of the 7th Mathematics, Science, and Computer Science Education International Seminar, MSCEIS 2019, 12 October 2019, Bandung, West Java, Indonesia. EAI, 2020. http://dx.doi.org/10.4108/eai.12-10-2019.2296327.
Full textYe, Shijie, Yanping Guo, Jianliang Li, and Ming Lu. "Simulation Analysis for Peak Pressure of Shock Wave Based on Lax-Friedrichs Method." In 2012 Fifth International Conference on Information and Computing Science (ICIC). IEEE, 2012. http://dx.doi.org/10.1109/icic.2012.48.
Full textFeng, Fan, Chunwei Gu, and Xuesong Li. "Discontinuous Galerkin Solution of Three-Dimensional Reynolds-Averaged Navier-Stokes Equations With S-A Turbulence Model." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-23133.
Full textRiestiana, V. A., R. Setiyowati, and V. Y. Kurniawan. "Numerical solution of the one dimentional shallow water wave equations using finite difference method : Lax-Friedrichs scheme." In THE THIRD INTERNATIONAL CONFERENCE ON MATHEMATICS: Education, Theory and Application. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0039545.
Full text